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ABSTRACT 

The obj ectives of this s tudy are to 1 )  review and assess the 

s tate- of- the- art of prediction algorithms for urban traffic control 

in terms of  their accuracy and application, and 2 )  determine the 

prediction accuracy obtainable  by examining the performance of 

general time series analysis methods with actual data .  This report 

is divided into two parts . Part I discusses  the review and asses s ­

ment, while Part I I  examines general time series analysis methods . 

Ac�urate prediction algorithms are necessary for the effective 

operation of  computerized traffic responsive control sys tems. These 

systems offer the potential for reducing �raffic congestion and 

improving operational efficiency in the existing urban roadway system . 

Although a number of  prediction algorithms have been proposed 

and s tudied for urban traffic control, two a lgorithms are dominant : 

the Second Generation and the Third Generation predictors of the 

Urban Traffic Control System (UTCS) . Both predictors are based on 

single - location traffic measurements . Both algorithms use the linear 

combination of residues (differences between traffic measurements and 

either his torical data or smoothed traffic data) as the basic feature 

for prediction. The Second Generation pr�diftor requires historical 

data as the reference . The Third Generation predictor does not 

require historical data and makes predictions based on current traffic 

measurements only • .  

In the review, (i. e . ,  Part I of this report) test  results 

showed that the predicted values of both the Second and Third 
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Generat i on Predictors tracked the trend of  the actual values o f  the 

vo1ume measurements, and both a lgorithms improved the predict ion 

compared to us ing the current measurement as the predicted value . 

However, in both predictors the predicted values t ime- lagged the 

actual measurements . Also, the Second Generation Predictor worked 

consi stently b etter than the Thi rd Generation Predictor . This 

implies that the urban s treet traffic pattern does have cons iderable  

repeatab i l i ty, so  that the historical volume data is  very des irable 

even for short-term traffic predictions . 

In Part I I  of thi s  report a general technique was developed for 

t ime series predict ion and was appl ied to the problem of determining 

optimum predictors  for traffic volume . The technique was developed 

for opt imiz ing ARlMA ( autoregres s ive integrated moving average - see 

Box and Jenkins T ime Series Analys i s  and related pred ictors ) . Second 

and third generat ion UTeS predictors were with in the general ARlMA 

framework 'and a systematic probe of a very general class  of pred ictors 

tentat ively showed the s imple second and third generat ion predictor 

forms to be optimal within a large class including ARIMA and cer tain 

non - l inear adapt ive extens ions . The best parameters to use are 

discussed. All emp irical observat ions were based on actual traffic 
volume data col lected on streets in Toronto . 

2 



PART I 

REVIEW AND ASSESSMENT OF PREDICTION 

ALGORITHMS FOR URBAN TRAFFIC  CONTROL 

3 



1 . 0  BACKGROUND 

In general, there are two types of urban roadway control 

syst ems ; namely, the s treet network control sys tems and the free-

way control systems . The subjects  which are s tudied here concentrate 

on s treet network control . The prediction algorithms in urban street 

network control are des igned to asses 's the short term variations of 

the traffic bas ed on current and/or pas t traffic measurements ,  so  

that the available  traffic data can be  used as the basis  for traffic 

control act ion determination .  E s sentially ,  the main intended purpose 

of the prediction algor ithm is to  compensate for the t ime lag between 

the traffic measurem�nt and the traffic control ac tion so that the 

effect iveness  of the traffic responsive control act ions can be ful ly 

realized . 

In urban freeway control , incident detection algorithms are 

counterparts of the prediction algorithms . The main purpose of the 

incident detection algorithms is to reduce the time delay between 

the occurrence of an incident and the control action for removing the 

effect caused by the incident . Although inc ident detection was not 

the maj or subject  under review , the concepts used in incident detec­

tion, such as traffic data smoothing and the correlation between 

traffic measurements and spec ial events were quite relevant and 

useful  in asses s ing the traffic prediction algor ithms . 

2 . 0  INTRODUCTION 

In a real - time traffic- respons ive urban traffic control system , 

the optimum s i gnal timing is a function of the traffic in the network . 

The control actions are derived from the traffic measurements . In 

mos t  real - time control sys tems , there is an inherent time lag between 

the sys tem (traffic) measurement and the control act ion . Th is time 
4 



lag prevents the real - time control algor ithm from real i z ing its ful l  

effect ivene ss .  Furthermore ,  t ime l ag s  l ead t o  potent ial oscil lat ion 

- both in the c ontrol action itself and the result ing traffic flow .  

Methodolog ies which incorporate short - t ime traffic prediction into 

control a lgorithms therefore are very promis ing in the enhancement 

of the e.ffectiveness  of real - time control . 

A functional representation of a typ ical real - t ime traffic 

control system is shown in F igure 1 .  In this system ,  the traffic 

data are gathered by the detector s  on the road . These data are then 

processed to determine the traffic s tate (e . g . ,  the traffic vOlume) 

of the system . The control commands are then generated based on the 

traffic state . These control  commands are finally implemented ( in 

terms of s ignal t im ing patterns) on the s treet network to regulate 

the traffic flow in a des ired fashion . Starting from raw data 

gathering to control command implementation constitutes the traffic 

control loop . 

In thi s  traffic control l oop , the t ime l ag between data gather ­

ing and control command implementation stems from three p laces . 

F irst  of a ll ,  t ime is needed to process and smooth the raw traffic 

data  so that a meaningful traffic state can be obtained . Then , a 

computational t ime i s  needed to trans late the traffic state into 

control commands ( e . g . t iming pat tern) . Fina l ly,  a so - cal led tran ­

sit ion period i s  needed to make a smooth transit ion from the current 

s ignal t iming pattern to  the new t iming pat tern . This  transit ion 

per iod is necessary to e l iminate the unders irab le di srupt ions (and 

thus potential traffic congestion) between t iming pattern changes , 

and to comply with safety cons iderat ions (e . g . , minimum amber time , 

minimum green interval ) . The time lag process from traffic 

5 



measurement to new t iming pattern implementation i s  r epresented 

schematical ly in F igure 2 . This process usual ly takes 5 to 1 5  minutes. 

In other words , i t  takes at least 5 to 1 5  minutes for a new timing 

pattern to become effective . I t  is therefore desirab l e  to predict 

traffic volume this far into the future so that the timing pattern to 

be  used is bas ed on the traffic  volume which will exist  at the time 

the result ing timing pattern i s  in effect . The mathematical procedures 

which are des i gned to make real - time , short - term traffic predictions 

based on current and/or previous traffic  measurements are the 

"predict ion algorithms" . 

2 . 1  MEASURES OF EFFECTIVENESS 

The effectiveness of the prediction algorithms can be defined 

as the ab i l i ty of compensating the time lag as mentioned before , and 

the abi l i ty of achieving prediction accuracy . In general , the time 

lag also shows up as the prediction error ( i . e .  the inaccuracy in 

predict ion) and thus , in actual  practice , the prediction error is 

usually used as the major measure of effect iveness  of prediction 

algorithms . 

For the purpose of  numerical comparison , two aggregated measures 

are usually used to define the predictor effectiveness (Reference 1 ) . 

They are the mean square error and the mean absolute error of predic­

tion which are defined as fol lows : 

mean square error 

= i t (measured value - predicted value) 2 

6 
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mean absolute error 

= i t I measured value - predicted value I 

where N is  the total number of  predictions made . The mean square 

error indicates the presence or abs ence of some frequent large errors 

in prediction, and the mean absolute error gives an idea of the error 

magnitude one m ight typically expect . In addit ion to the aggregated 

measures, predic t ion error distribution i s  another measure which 

is particularly useful in determining the bounds of the errors and 

the biases . 

2 . 2 IMPACTS ON REAL-TIME TRAFFIC CONTROL 

The usefulnes s  of the predic tor in the traffic respons ive control 

sys tem d�pends heavily on the s ensit ivity of the computed t iming 

pattern with respect to the changes in traffic volume . I f  the traffic 

control sys tems were to use rather long t ime average volume as the 

bas is for the t iming pattern computation ( i . e .  the traffic fluctuations 

were not used in timing pattern generation so that short term variations 

were not cons idered) , or if the traffic variations have only l i ttle 

effect on the t iming pattern computation, the prediction algorithms 

and their prediction accuracy would have little  value or consequence 

on traffic control . On the other hand, if the timing pattern genera­

tion of the traffic control sys tem is highly respons ive to the 

traffic variations, the prediction algori thms and their  prediction 

accuracy would have a maj or impact on the computed s ignal t iming pattern 

and thus the resulting traffic flow .  Therefore , i n  actual applications , 

not only the predicting accuracy but, al so the associated impact of 

this  accuracy on the real - t ime traffic control have to be 

cons idered.  

9 



3 . 0  CLASSIF ICATION OF EXISTING ALGORITHMS 

Prediction a lgor ithms may be c lassified into the fol lowing 

categories : 

o algorithms which require more than one measurement location 

versus thos e which require the traffic measurement from a 

s ingle location , 

o algorithms which require historical traffic data as a 

reference versus those  which rely on current data only 
o a lgorithms which use the l inear comb inations of traffic 

measurements for prediction ,  versus those based on 

non- l inear combinations or parameters 

o a lgorithms which are adaptive to the underlying process  

(e . g' . , the parameters of the algorithm vary with traffic  

deviations ) versus those that are not . 

3 . 1  MULTIPLE - LOCATION VERSUS SINGLE LOCATION MEASUREMENT 

In  an attempt to obtain more prediction accuracy , mult iple 

locat ion measurements may be  used. The additional measurement loca­

tions may be ups tream from the point of the prediction and/or on 

different traffic lanes . The practical implication of the mul t iple 

measurement location requirement is  more detectors , communica­

t ions , and proces s ing . These addit ions wil l  increase the cost 

of the traffic  control sys tem s i gnificantly . Previous s tudies 

(Ref . 2, 3, 4 )  showed that conflicting results  can b e  obtained on the 

benefit to be derived from the additional measurements . More investi -

gation in  this area is thus needed in  order to determine under what 

conditions and to what extent multiple location measurements wi l l  

provide increased benefits over s ingle location measurements .  The 

10 



advantage of mult iple measurement locations can be examined us ing 

the methods developed in Part I I  of this report . 

3 . 2  HISTORICAL DATA VERSUS CURRENT DATA ONLY 

Another cons ideration in predict ion algorithm clas s ification is 

the his torical data requirement . I f  the traffic flow has s ome 

regularity (or repeatabil ity from day to day) the his torical data 

should be very helpful in predict ing future traffic flow even on the 

short term bas i s . This is becaus e the next interval flow of the 

historical pattern is probably the best informat ion for compensat ing 

the t ime lag between the predicted and the actual traffic flow .  

However , the implementation of  a predict ion algorithm us ing historical 

data would require a large data base . This historical data base 

would requ ire several s tratificat ions ( i . e . , by detectors , by week 

days, and by control intervals )  and would thus be cons iderable . 

This his torical data base not only would occupy large core space but 

also would require cons iderab le effort to gather and to process before 

a traffic control sys tem could be set up . In add ition ,  s ince the 

historical data would be s ite specific , the prediction algorithm 

would not be readily trans ferable to other s i tes . 

3 . 3 LINEAR VERSUS NON-LINEAR 

All the exis ting algorithms with implementation experience 

which have been reviewed used the l inear comb ination of res idues 

for traffic prediction .  The res idue i s  defined as either the dif ­

ference between actual measured traffic flow and the historical 

data , or the difference between the actual measured and the smoothed 

traffic flow data . 
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3 . 4  ADAPTIVE VERSUS NON -ADAPTIVE 

One factor which determines a good predictor is  its abi l ity 

to mode l the underlying process of interest  ( e . g . , the traffic 

flow in this case) . I f  the characteris tics of the proces s  under 

prediction change with t ime ( as mos t of the traffic  flow does) , 

the mathemat ical model of the pr6c�s� should  also be  changed in,. 

order to provide an accurate representat i on from which the predictions 

can be obtained . Making the model automat ical ly adapative to the 

changing under lying process would therefore seem to be a des irab le  

feature . This i s  d i scussed further in  Sect ions 4 . 1 . 4 and 4 . 2 . 2  and 

examined analytical ly with actual data in Part I I  of thi s  

report . 

3 . 5 SUPPLEMENTAL INPUTS TO THE PREDICTORS 

The prediction algorithm clas s ification del ineation up 

to this point as sumed that the traffic s tatus was measured by 

detectors in the road . This  as sumption is  a val id  one because 

mos t exist ing traffic predictors used the detector measurement 

as the only input data . However , inputs from other sources may 

have profound effect on the performance of the predictor (e . g . , 

the a-priori knowledge of special  events affecting traffic such 

as ball  games or adverse weather conditions ) . 

An example  of us ing supplemental information that could be  

beneficial in traffic  predict ion i s  the identification of  speci ­

fic vehicles . This information could be  obtained from an auto ­

matic vehicle  idonti fier (AVI ) .  The AVI (under development) is 

a small  passive device (either electronic or optical)  wh ich can 

be ins talled on the vehicl e .  The AVI can carry information of 
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the vehicle such as the vehicle identi fication number .  This 

informat ion can be  p icked-up by special  ways ide detectors while  

the veh icle i s  pass ing by . The real - t ime information - - t ime , 

l ocation , and identi fication - - is  transmitted to the control 

center , through communication l ink , for process ing . 

The real - t ime AVI information would  be very valuab l e  in 

supplementing the traffic s tatus obtained from the regular sys tem 

detectors in predict ing downstream future traffic demands and in 

computing the traffic control commands . AVI is an advanced con­

cept that offers a potential for enhanc ing the effect iveness of 

conventional traffic control techniques .  

4 . 0  PREDICTION ALGORITHM REVIEW AND ASSESSMENT 

The prediction algorithms reviewed and described herein work 

exclus ively with digita1- computer-based traffic responsive control 

systems . This  k ind of control system is rather new . A maj or 

research proj ect us ing digital computer in urban traffic control 

in the United States was initiated in May 196 8 by the Bureau of 

Pub l ic Roads ( the predecessor of the Federal Highway Administration) 

under the name of Urban Traffic Control Systems (UTCS) (Reference 

5) . The UTCS proj ect provided the impetus for the evolution of 

advanced traffic control s trategies (which includes the pred ict ion 

methodologies ) .  The re are a number of prediction algori thms wh ich 

have been proposed and s tudied for urban traffic control .  However , 

the two mos t  prominent algorithms are those which s temmed from the 

UTCS control software , namely , the Second Generation and the Third 

Generation Predictors . Both predictors are des igned for s ingl e  

locat ion measurements . Both algorithms us e the l inear comb ination 
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of res idues for predict ion .  The Second Generation Predictor 

requires historical data ( or pattern of the data) as the 

reference . The Third Generat ion Predictor does not require 

historical data and makes predictions based on current traffic 

measurements only . 

4 . 1 SECOND GENERATION UTCS PREDICTOR 

The predictor for the Second Generation UTCS software pre­

dicts the next control interval (on the order of S to lS minutes )  

traffic volume at each detector locati on in real - time based on 

the measurements  from the s ame locat ion only . The algorithm makes 

use. of both smoothed h is torical traffic  data and current traffic 

volume measurements from the vehicle  detector .  The rationale is 

that if  the traffic volume of the day in ques tion follows the 

average his torical pattern , the historical pattern would g ive good 

predictions on volume changes in the near future . In addition ,  as 

a supplement , the current measurements are used by the algor i thm 

to correct for the traffic deviations from the average his torical 

pattern . 

4 . 1 . 1  Predictor Formulat ion 

Mathematically , the Second Generation Predictor is  defined by 

the fol lowing s equence of computations . First , the res idue ( i . e . , 

the difference) r e t) between the measured volume f (t) and the cor­

responding historical volume m et) is  computed as follows : 

r et) m f ( t) - m et) (1) 
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This residue is then smoothed us i ng an exponent ial  f i lter . The 

predicted value of r e t) is defined as c ( t)  by the fol lowing 

smoothing process ,  

c (t )  = ac ( t - l )  + Sr ( t - l )  ( 2 ) 

where 

c (O )  = 0 ,  and 

a + S =�l ,  a � 0 and S � 0 

The difference , h{t) , between the res idue r e t) and the smoothed 

res idue c(t) i s  computed as 

h ( t) a r e t) - c ( t )  ( 3) 

An empirical adj ustment term d ( t) is  then computed as , 

d (t) = yh ( t.-l) (4 )  

Finally , the predicted volume at t ime t is  the sum of three 

terms , 

v et)  = m et) + c (t) - d ( t )  ( 5 ) 

(where , al l'the terms in the equat i ons arc defined in the text 

of this subsection) . 

In summary , the predicted volume is  the average his torical 

pattern modified by the predicted res idue between current and 

historical traffic , and the result i s  further adj usted by a 

fract ion of the difference between the s ame res idue and the 

predicted one . 
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. . 

For a g iven location ,  there are two parameters � and y to be 

determined . The parameter a is constrained by a = 1 - �. The 
parameter � is the smoothing coefficient for the exponent ial smooth­

ing process  of the res idues . For the UTCS system which was installed 
in Washington , D . C . , the value of � was tuned to 0 . 9 .  The parameter 

y is a constant ob tained off- l ine . It is computed from representa ­

t ive volume data of the locat ion in quest ion by 

y = 

n- l 
(n- l ) �  h (t) h ( t - l ) 

tel 
(n- 2) �n h2 (t )  

t=l 

(6 )  

where n is  the number of data points of h ( t) of the repres entat ive 

data s e t .  For the UTCS system in Washington , D . C . , 0 . 2 was used 

for y. 

Instead of s toring the h istorical traffic pattern itse l f ,  

for each measurement location , the Fourier s eries approximation 

of the his torical traffic patterns are stored in the computer . 

This is  done by finding the coefficients ( ao' ai ' s and b i's) of 

the fol lowing Fourier series . 

m et)  
k 

= aO + E ( a . cos 2nit/N + b . sin2nit/N) 
. 1 1 1 1= 

. 

( 7) 

which best  fits  the his torical data for the location in question .  

This curve fitting process i s  done off- l ine us ing representative 

data for each location . In  equation ( 7) , parameter N is  the total 

number of t ime intervals in the representative data set (e . g . , if 

15  minute intervals are used , the data for a 2 4 -hour day wi l l  

cons i st  o f  9 6  intervals) , and parameter k i s  a user input parameter 
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which determines the fidel i ty of the Four ier ser ies approximat ion . 

I t  is  usual ly the result  of a tradeoff between the accuracy of the 

�ourier series for represent ing a t ime varying function and the 

storage space and computational effort one is  wil l ing to pay . In 

general. for more rap idly varying functions , higher values of k 

should be used . The upper bound k i s  N/ 2 .  Numbers from s ix to 

twenty have been used for k in past appl ications . 

4 . 1 . 2  D i scus s ions 

The fol l owing subsections discuss the Second Generation UTCS 

Predictor . The di scussions cons ist  of s�me qual i tative evaluations 

of the algorithm based on analyt ic reasoning , and some potent ial 

improvements to the algorithm . The discuss ions do not represent 

final recommendations for a lgorithm modificat ion . The val idity of 

the evaluation and the amount of improvement s can only be verified 

numerical ly us ing real data .  

4 . 1 . 2 . 1  Historical Data Storage Cons iderations, 

The historical data used in the Second Generat ion UTCS Predic ­

tor is  approximated by a Fourier series . One of the reasons that 

the Fourier s eries was originally se lected in the algorithm for 

historical data representat ion was probably for achieving memory 

space savings in the computer . Instead of storing the hi storica l 

pattern itself , the Fourier series representation of the pat tern in 

terms of a set of Fourier coeffic ients is  s t ored in the memory . 

These coefficients generally occupy less memory space than that of 

the volume. pattern and thus offer some memory space saving s . How­

ever , in order to accurately represent the time fluctuat ions of the 

traffic volume pattern , high harmonics were needed in the series 

which result  in a l arge number of  coefficients .  Thus , the memory 
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space �av i ng� hy using Fourier s er i e s approximat i on wa s not as  

much as was or iginally ant ic i pated . 

The Fourier series representation may have other undes irable 

characteris t ics in terms of computational requirement . Once the 

historical pattern i s  stored in Fourier series form , the real - t ime 

computations required for retrieving the h istorical pattern are 

an order of magnitude more than the remaining computations in the 

predictor algor ithm .  Even though s ine and cos ine computat ions may 

be unified for all  detectors , for each locat ion of interes t  and 

for each control interval , there are many mul t ipl ications and s ine 

and cos ine computat ions involved to compute t he historical volume 

m ( t) . Each of the many measurement locations in the system 

requires a prediction and the retrieval of  the historical pattern . 

The involved computation that is  required in the retrieval proces s 

us ing Fourier series represents a considerable  added burden to compu­

tati onal requirement . 

Furthermore , i t  i s  wel l  estab l ished that traffic  control and 

traffic  pattern changes are mutually interactive . Once a timing 

pattern ( i . e . , of the traffic  control s ignals)  change is  made in 

the traffic  control system ,  the traffic pattern ( e . g . , traffic 

volume profi le) wi l l  change accordingly as a result of the new 

signal timing pattern. Therefore , the historical traffic pattern 

should be updated for s ignal timing pattern opt imizat ion . I f  the 

Fourier series is used for traffic pattern representat ion ,  rea l -time 

updating of historical traffic pattern means rea l - t ime updat ing 

18  



of the !lourier coofricients. However, U� previously montioned the 

Fourier coeffic ients est imat ion process  is  a l so time (CPU t ime) 

consuming , and perhaps for rea l - t ime operat ion . Therefore , for 

real - time traffic control system des ign , careful  tradeoff between 

memory space sav ings and computational t ime sav ings shou ld be 

done before reaching the f inal decis ion on the type of prediction 

algorithm to be implemented . 

Another  cons ideration in his torical pattern repres entation 

is  the fi l tering of his torical data . As any curve fitting pro ­

cess , Fourier series representation has the effect of filtering' 

out the i.nterval- to- interval f luctuations o f  the his torical traf­

fic pattern . However , it  i s  uncertain whether this kind of 

f i ltering is necessary or advantageous . S ince the hi storical 

pattern in the Second Generation Pred ictor is  des igned for pre ­

serving the traffic pattern for prediction ,  the fluctuat ions 

may be important in short term predictions . Furthermore , the 

histor ical pattern itself is the result  of a f i lter ing process . 

Each point on the h i storical pattern i s  an average of the data 

over many days , and thus , the day- to -day var iations have been 

filtered out . 

4 . 1.2 . 2  Pred i ction Structure : 

By some mathematical manipulations , the basic structure o f  

the Second Generat ion UTCS Predictor can b e  deduced . From equation 

( 2) , by success ive subst itutions , the var iable  c(t) can be 

written as fol lows : 
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K- l 
c (t) =aKc ( t - K) + ( l - a) L aK- S - lr (t - K+S) 

5=0 
( 8 )  

The constant K i s  t he number of interval s  that the predictor has 

been in operati on since the latest  start of the system (e . g . , the 

s tarting t ime of a working day) • .  Again from equation ( 2 ) :  

c (t - l ) = ![c (t ) - ( l - a) r (t - l ) ] . a 

With .s imple manipulations , i t  can be proved that  

K - 2  
c (t - l ) = aK- lc (t -K) + ( l -a) L  aK - S - 2r ( t - K+S) ( 9) 

S=O 

Define � (t )  as  the deviation (difference) between the predicted and 

the historical volumes at t ime t ,  then , 

� ( t )  = v et )  - met) 

= c (t )  - d (t )  

= c ( t) - yh ( t - l ) 

= c (t )  - y [r ( t - l ) - c (t - l ) ] ( 1 0 )  

Subst ituting equations ( 8 )  and ( 9 ) into equation ( 1 0 ) , one has ,  

� ( t )  = aK - l (a+y)c (t -k) 

K - 2 
+ ( l -a) (a+Y) L aK -S - 2r ( t - K+S) 

s=o 

+ ( l -a -y) r (t -l) 

2 0  

( 1 1 )  



I f  the predictor has been initiated for a considerable time ( i . e . , 

for a large K) , becau se a i s  less  than one , the first term of 

equation ( 11 ) , aK - l (a-y) c ( t - K) , is negligible . Thus , � ( t )  can 

be approximated as , 

K - 2  
� (t )  = ( l -a) (a+y)E  aK-S - 2r ( t - K+S) 

s=o 

+ ( l-a -y)r( t - l )  

( 1 2 )  

Note that , since a and yare constants , the right hand side o f  

equation ( 1 2 )  is  a l inear combination of a l l  the previous res idues 

r (t - l) , r ( t - 2 ) , • . •  , r (t-K) between measured and the historical 

volumes . In other words , the prediction on volume deviations , by 

the Second Generation Predictor , are based on only the l inear 

combination of previous res idues between measured and hi storical 

volumes . Whether the l inear combination of residues i s  the best 

methods for volume predictions can only be determined numerica l ly 

us ing actual f i e ld data . 

4 . 1 . 2 . 3  Implement ing an Adaptive Feature: 

From equation (5) - the bas ic equation for the Second Genera ­

tion Predictor - i t  i s  seen that , s ince m e t) is the known hi stor ical 

volume and d ( t) is  an emp irical correction term, predict ing v e t) 

is  essentially the same as the determination of c ( t) . From equation 

( 2 ) , c ( t) is determined by an exponent ial  smooth ing proces s .  I f  

the smoothing parameter a i s  made adapt ive, better smooth ing can 

be obtained such that the output of the adaptive  smooth ing filter 

tracks the underlying process  more closely . 
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In other words ,  an improvement may be obtained from the Second 

Generation Predictor by simply making the parameter a in equation 

(2)  adaptive . That i s , 

c (t) = a ( t - l ) c (t - l )  + [ l -a (t - l ) ]! ( t - l )  ( 1 3 )  

I t  i s  emphasi zed that thi s improvement i s  desirable , because the 

Second Generation UTes Predictor has been showing the bes t  per -

formance so far . 

The Trigg and Leach method (Reference 6 )  could be used to 

determine the parameter aCt) . With this method 

aCt)  = f ( l  - 2f��) ( 1 4 )  

where f i s  a constant and 0 < f < 1 ,  Q (t) is  the smoothed forecast 

error ana A (t )  is  the smoothed mean absolute deviation ,  both compu­

ted at the end of period t .  The smoothed error i s  computed accor­

d ing to 

Q (t) = �Q ( t - l )  + ( l - � ) h (t )  ( 1 5)  

A (t )  = �A ( t - l )  + ( l -� ) l h (t ) 1 ( 1 6 )  

where h ( t) = r et )  c (t) i s  an error term as defined in the pre -

vious Section and � i s  a smoothing constant such that 0 < � < 1 .  

The term � i s  called the smoothed error tracking signal . 

It i s  noted that , from equations ( 1 5 ) and ( 1 6 ) , the following 

condit ion ,  

o � I Q (t) 1 � A (t )  
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is  always true , and thus the smoothed error tracking signa l always 
lie s  in the interval ( - 1 , +1 ) . 

I f  the forecasting system as defined in equation ( 1 3 ) i s  

performing adequately ,  the value of  the smoothed forecast error 

Q (t )  wil l  fluctuate between positive and negative values around 

zero (while  � ( t )  i s  always greater than zero and greater than 

IQ (t )I) .  As a consequence , the value of smoothed tracking signal 

wi l l  be smal l , near zero , and the forecasting s..ystem in " in control . "  

I f  the underlying form of the t ime serie s r e t) changes , the fore ­

cast ing system wi ll  eventual ly begin to generate large errors and 

the tracking s ignal wil l  move towards either plus or minus unity . 

That i s , the forecas ting system is  "out of control . "  The Trigg and 

Leach method decreases  the smoothing constant aCt) when the track ­

ing s ignal indicates an out - of -control cond ition thus g iving more 

weight to the recent data and allowing the system to more rapidly 

track the new s ignal . When the system has stab i l i zed ,  however , the 

value of the smoothing constant is returned to its  normal value 

( i . e . , f) automatica l ly . 

I t  i s  noted that the Trigg and Leach method i s  not proposed 

as a stand alone algorithm for traffic predict ion . Rather , it i s  

a potential improvement on both the Second and the Third Generation 

UTCS Prediction a lgorithms . 

4 . 2  THIRD GENERATION UTCS PREDICTOR 

The predictor for the Third Generation UTCS software predicts 

the traffic volume two control interval s  into the future . (Two 

control intervals of lead time are required by the Third Generat ion 

UTCS software . )  Like the Second Goneration predictor , the 
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Generation Predictor also  predicts the volume at each 

locat ion in real time based on measurements from the same location. 

However ,  it i s  different from the Second Generation Predictor in 

that the prediction process  relies solely on current -day measure ­

ments (no historical traffic pattern i s  required for prediction) . 

The Third Generation Predictor operates as  follows . 

For each location of interest , the vehicle detector measure ­

ments are exponentially smoothed . The predicted value o f  the 

traffic volume at that locat ion is the sum of the most recent 

smoothed value and the residue ( i . e . , the di fference between 

smoothed and un- smoothed values) which i s  extrapolated to the pre - . 

d iction time . (Refer to equations ( 19) and ( 2 0 )  as  to how t he 

extrapolation was done . )  The extrapolating coefficient i s  deter ­

mined from representat ive data for the location in  question and 

also i s  a function of  how far in the future the prediction is  to 

be made . 

The rationale for the Third Generation Predictor was to 

develop a methodology that did not depend on hi s torical data .  The 

development of such a predictor was considered des irable fOT the 

fol lowing reasons ( 3) : 

o A large data base i s  required for the his torical data . 

Thi s data base consumes computer storage space and mus t  

be updated periodically off -line . 

o Traffic volume can vary substantially depending on 

various external (with respect to the algorithm) factors 

(e . g . , weather conditions , special events ,  developments 
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in other modes of transportation , and even the traffic 

control change itself) . 

o An analys i s  conducted early in the UTes proj ect us ing 

" s imulated" �raffic data indicated that uti l i z ing 

his�orical da�a was �ot ��ways necessary to achieve 

good prediction . 

o The predictor algorithm would be more practical due to 

i t s  transferability to other systems . 

o There i s  a general concensus amongst  traffic engineers 

that a highly responsive control software (the Third 

Generation control software ) should have a predictor 

that did not rely on historical data . 

4 . 2 . 1  Predictor Formulation 

Mathematically ,  the Third Generation Predictor is defined by 

the following sequence of computations . First , the current day 

traffic measurements are smoothed to obtain the up - to - the-moment 

trend of the traffic volume . 

where vk ( i )  = traffic measurement at station k ( i . e . , the 

traffic detector) at current time interval i, 

( 1 7 ) 

0k ( i )  = the exponentially smoothed measurement at station k 

up to t ime interval i ,  

S = smoothing constant . 

The res idue Yk ( i ) i s  next computed as  the difference between the 

measured and the smoothed values . 
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(18) 

An extrapol ation is used , in the original Third Generation UTes 

Predictor , to predic t  the estimated res idue j interval s in the 

future . (Recal l that the residue i s  defined as the difference  

between smoothed and un- smoothed traffic measurements) , 

( 1 9) 

where aj i s  the extrapolation coeffic i ent . Th is  coeffic ient i s  

obtained off-line , using a set of "representative data" , by the 

fol lowing equation : 

( 2 0)  

a. = 
J 

where N is the number of sample  points of the representa t ive 

data . 

An extrapolation is also performed on �
k ( i ) to estimate the 

smoothed volume j interval s  in the future as fol lows: 

( 2 1) 

The variables a1 and a2 are computed in either one of the fo llowing 

two ways : 
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· . 

( 1 )  The variables a1 and a2 are determined such that the forecast 

0k(i+j ) is the l inear extrapolat ion of  the last two values . That 

i s  

( 2) T�e 0k ( i+j ) i s  selected a s  the last value . That is , 

In  the final software which was instal led in Washington , D . C . , 

the second method was used to determine 0k ( i+j ) , that is  

( 2 2 )  

Finally , the predicted volume j intervals in the future ( i . e . , 

the quanti ty of interest) i s  determined as , 

( 23)  . 

The component 0k ( i+j ) can be interpreted as the smoothed coarse 

pred iction of the traffic j intervals  in the future , and the Y
k ( i+j ) 

term as  a fine adj ustment of the prediction to account for the 

res idues . 
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This form of the third generation predictor is discussed 
further in Part II of this report where the connection with 
optimal "ARIMA" predictors is noted. 
4 .2 . 2  Discussion 

In the Third Generation Predictor. the prediction is done by 
extrapolation. The extrapolation coefficient aj is obtained off­
line using "representative" data. The implicit assumption is that 
there is a norm of the traffic pattern which can be reproduced 
according to a "representative" data set. It is interesting to 
note that this assumption is in conflict with the idea of "highly 
responsive control software" (i.e . •  the Third Generation control 
software) for which the predictor was designed. Aside from this 
conflict. it is still reasonable to ask--to what degree is the 
assumption valid? In other words. how much benefit (in terms of 
algorithm performance) could be obtained if the process for 
computing a. were made in real-time (i.e . •  computing a. using J J 
current data)? 

The on-line computation of a. could be done by a simple modi­J 
fication to equation (20) as follows: 

a :I 
j 

-j 
(N-I)�=I_NYk(S)Yk(S+j) 

o 
(N-j-l)t Yk(S) Yk(S) 

SClI-N 

( 24 )  

where N is the number of the latest residue data to be used for the 
computation, j is the number of intervals in the future which the 
predictions will be made, and the current time interval is 
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denoted as interval O .  Note that  the coeffic ient aj i s  now a 

t ime varying funct ion which is adapt ive to  the latest trend of 

the traffic deviations . 

Compared to the original Third Generation Predictor , addi ­

t ional real - t ime computation i s  needed for parameter aj. In  addi­

tion ,  more s torage space i s  needed to save the N l atest res idues 

for each location . However , the number N can be constrained by 

the user of the algorithm and it is usual ly a small  number , which 

puts a bound on both the s torage and CPU t ime expenditures� 
I 

Furthermore , a recursion formula  can be derived to replace equa­

tion ( 24 )  which wil l  make the aj computation very efficient . 

In the Third Generation Predictor , .  exponential smoothing is  

used to filter the volume measurements ( equation 17 )  • .  The smooth­

ing constant a can be made adaptive by the Trigg and Leach method . 

(See Section 4 . 1 . 2 . 3) With this modification on parameter a and 

the on- line computation of  a. (equation 24) , the new Third Genera-J 
t ion Predictor would be fully adaptive . The appl ication of the 

Trigg and Leach method to·the Third Generation Predictor is evalu­

ated with actual data in Part I I  of this report . 

4 . 3  GENERAL ASSESSMENT ON THE UTCS PREDICTOR 

Based on the l iterature , the review and as sessment identified 

two bas ic types of pred ictors for traffic control , namely , the 

Second and Third Generation UTCS pred ictors . These  predictors 

are at the forefront of prediction methodology for urban traffic 

control . During the development of advanced traffic control 



s trateg ies for the UTCS Proj ect , various predict ion algorithms 

were proposed and s tudied , but l ater dropped from consideration 

during the evaluation phase . These  algorithms are not inc luded 

in the Report . 

The maj or difference between the Second and the Third Genera­

tion Predictors is that in the Third Generation Predictor , the 

historical data is not required for prediction (although some off­

l ine determination of aj i s  required) . This difference represents 

a considerable computer s torage savings for the Third Generation 

Predictor . This difference also represents a cons iderabl e  savings  

in  the effort involved in the col lection and preparati�n of histor­

ical traffic data' in the initial system set -up s tage .  Since the 

Fourier series representation of historical data is  used in the 

Second Generation Predictor , eliminating the historical data 

requirement also.represents a considerable savings in CPU time 

during system operation . 

I t  is noted that for the system which i s  warranted for 

advanced traffic control , hundreds of sys tem sensors ( i . e .  traffic 

detectors) wil l  be required ( e . g . ,  even the experimental UTCS 

system in Washington , D . C .  requires that many sensors) . I f  the 

Second Generation Predictor is used , for each s ensor and each 

t ime interval the Four ier series computations will  be required . 

The real - t ime computation involved may not be a small  amount . 

Also , because of the real - t ime cons iderat ions , for each sensor , 

the whole  day ' s  historical traffic pattern has to be s tored in 

core , so that  the rol l - in and rol l - out t imes can be el iminated for 
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speedy real - t ime process�ng . (The histor ical traffic data for other 

d.ys of the week is stored on di sk) . Thi s  represents a principal 

portion of the core requirement of the traffic control strategy . 

In terms of �h� 'effectivenes s  of the predictors , based on 

the l imited tes� results  available, �Refs . 1 ,  2) , the Second 

Generation Predictor worked consi stently better than the Third 

Generation Predictor . This implies  that the urban s treet traffic 

pattern has considerable repeatabi l i ty ,  so that the his torical 

volume data is very des irable even for short - term traffic predic ­

t ions . Therefore , a tradeoff between predict ion accuracy and the 

historical data requirement ,  or some s implification in data storage 

and retrieval is in order . 

The test results also showed that the pred icted values o f  both 

the Second and Third Generat ion Predictors track the trend of the 

actual values of the volume measurements , and both algor ithms made 

some improvements in prediction compared to  us ing the current 

measurement as the pred icted value . However , both predictors had 

the problem of t ime - lagging between pred icted values and the actual 

measurements . This  t ime - lag was espec ially obvious with the Third 

Generat ion Predictor . Theoret ical ly , historical patterns used in 

the Second Generat ion Predictor should, help to resolve the t ime­

lagg ing problem . However , because of the stochastic nature of 

the traffic the t ime - lag was not ful ly' compensated by the Second 

Generat ion Predictor . 

There are similarities  between the Second and Third Genera ­

tion Predictor s . Both predictors use the res idues between the 

measured and smoothed volumes ( See Section 4 . 1 . 1  and 4 . 2 . 1) for 
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Another common factor for the Second and Third Generation 

algori thms is that there i s  currently no on- l ine updating capa­

bility of the historical patterns and the parameters . However ,  

as explained in previous sections , on- l ine updating and rea l -

t ime adaptive parameter changes  are worth considering . I t  is 

noted that an off- l ine procedure for historic�l pattern updating 

had been tried for the Second GeneFation Predictor in the UTeS 

Proj ect . Thi s  was done at  the end of the day when the traffic 

control system was inoperative . The traffic data which was recorded 

during the day was processed and the historical traffic pattern up ­

dated . thi s  procedure represents a pos sible added storage require ­

ment for the current -day traffic pattern , and extra effort of the 

analyst . 

Exponent ial smoothing was used in both the Second and Th ird 

Generation Predictors . In the Third Generation Predictor the 

exponential smoothing was used to determi�e the up - to- the -moment 

estimate of traffic volume . In the Second Generation Predictor 

the exponential smoothing was used as part of the prediction . The 

exponential smoothing process  is very effic ient in rea l - t ime pro ­

cess ing and consumes minimal core storage . I t  thus seems to be 

an effective method . 

In summary , while  a l imited amount of data is  available show­

ing that the UTes predictors  are capable of predicting the short 

term traffic fluctuat ions , these predictors stil l may not represent 

the ult imate in prediction capab i l ity . In an attempt to ident i fy 

improved or promising techniQues , Part II of this report cont inues 

the investigat ion of prediction algor ithms for urban traffic control . 

More general-time ser ies analys is  methods are developed and the ir 



performance s tudied with actual data . The Second and Third 

��beration predictors are shown to be special cases of the 

general methods examined . 
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1 . 0  INTRODUCTION 

Traffic predict ion algorithms have to date achieved a 

succes s  which seems neither entirely satis factory nor so  poor 

that we expect to eas i ly find improvements . Improvement is , 

however ,  needed and i t  is  des irable  to know how accurately a 

traffic volume predictor , such as the Second and Third Generation 

UTCS predictors  can perform . 

Past efforts  to find bet�er predictors have explored 

various suggestions ; it is appropriate at thi s t ime to attempt 

a systemat ic approach for f inding an opt imum traffic predictor . 

Although it  may not , in general , be pos s ible  to sharply 

delimit  the ultimate obtainable in a pred ict ion problem , the 

techniques which we have developed and used in this study , inc lud ing 

opt imization of the c lass  of ARIMA predictors g iven by Box and 

Jenkins and of an extension of thi s c las s to probe the usefulness  

of non- l inear or  adapt ive variations , provide a step in  that 

d irection .  

The results � although  obtained on a sample represent ing a 

l imited data base , suggest what may be expected in a more 

general case . 

2 . 0  BOX-JENKINS (Ref 1) 

2 . 1  GeNERALITY :  

The Box -Jenkins approach t o  t ime ser ies prediction appears to 

be the mos t  comprehens ive approach to general t ime series  predic ­

tion .  I t  encompasses in effect all poss ible l inear s ing le - channel 
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predictors . The term "s ingle- channel" refers to the fact that 

the previous values of the t ime s eries be ing predicted are the 

only real - t ime quantities used in making the prediction . Although 

other techniques are avai l ab le which are non- l inear and , thus , 

not covered by the Box-Jenkins approach , they tend to be  ad hoc 

procedures not tied together in a coherent program for t ime series 

analys is . As a result , the Box Jenkins approach may be  cal led 

" state - of - the- art" for times s eries predict ion and any attempt 

to define the l iini:ts of predictive power achievable  in almost 

any context should contain a Box-Jenkins analys is  or an evalua­

t ion of the applicable  Box Jenkins predictors . 

As to the general i ty and acceptance of the Box-Jenkins 

methodology , we quote the first s entence of each paragraph in 

Section 9 - 5  of Forecasting and Time Series Analys is  by D . C . 

Montgomery and L .A .  Johnson (Ref 2 )  which section is entitled , 

"A Critique of  the Box-Jenkins Models " : "The Box-Jenkins meth­

odology is a powerful approach to the solution of many forecas t ­

ing problems • • •  not without s everal important l imitations . • •  [ I ] In 

general we require at least 50 and preferab ly 100 observations 

to develop an acceptable  Box-Jenkins model . • . .  [ 2 ] Another dis ­

advantage of the Box-Jenkins models  is  that there is  not , at  

present , a convenient way to modify or update the estimates of 

the model parameters as  each new observation becomes availab l e , 

such as there is  in direct smoothing • • • •  [ 3 ]  A final drawback of 

the Box-Jenkins model s  is the inves tment in t ime and other 

resources to build a s atis factory model . . • •  Despite these short ­

comings , the Box-Jenkins models are probab ly the mos t  accurate 
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c J IlS S  o f  fo rocas t i ng modo l s  ava i l ab l e  toduy • . .  " (The hra c k e te d 
nU�erals have been inserted . )  

From the point of view of thi s  study , the above quotes 

amount almos t to an �nqualified recommendation of Box-Jenkins . 

The pos s ib l e  shortcoming [ 2 ]  i dentified by Montgomery and Johnson 

and al luqed to in Part I as applying to the second and third gener­

ation predictors (wh ich , as we shall  later show , are special  cases 

of Box-Jenkins predictors) is lack of  adaptat i on .  Adaptat ion 

amounts to a non- linearity . Certain aspects of adaptive pre ­

dictors were discussed in  Part I and the sub j ect wi l l  be addressed 

Qelow .  We shall  address  the question of how wel l  Box- J"enkins 

predictors  work when augmented with adapt ive terms . 

There can be no general class  of  t ime series predictors , 

and no analysis  of predictor s  for specific t ime series ( in this  

case traffic volume counts) can determine the bes t  predictors 

or the ult imate performance 9btainable , s ince there are always 

other predictors that can be added to any c lass of predic tors 

and the opt imum may be outs ide of the c lass examined . The 

"augmented Box -Jenkins probe" wi l l ,  however , represent a l im i ted 
approach to this ideal . 

Furthe r ,  we shall  show the form which the Box -Jenkins predictors 

take . As we have noted , they form a very general class whose  

essential restrict ion is  that i t  cons ists only of l inear predic ­

tor s .  A l inear predictor i s  of the form : 
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� A 
where Z t ( 1) is the predicted value of Z t+1  at t ime t .  Thus Z t ( 1) 

is  cal led a predictor of " lag1" . I f  1. = 1 ,  we have a " I - step 

predictor" ; if  1. = 2 ,  a " 2 - st ep predictor" . A predictor of lag 1 ,  

i . e . an 1 - s tep predictor , predicts the value , Zt+1 ' of the t ime 

series 1 s teps after the lates t avai lable  value , Z t . When 1 = 1 
� 

we use the s impl ified notat ion , Z t +l ' for the I - step predictor 
A A 
Zt ( l ) . As the equation shows , Z t ( 1 )  ( the predicted value) i s  formed 

as a l inear combination of Z t ' Z t - l ' Zt _ 2 • . .  It is as sumed that the 

coefficients � drop off rapidly as the value of Z t - k  which they 

multiply are further removed from Z t ( i . e .  as  k gets larger) . The 

general i ty and comprehensiveness  of the class of l inear predictors 

is much greater than one would initially expect . I t  might be 

pointed out that an analytic function i s  determined by all  its 

derivatives at a point and , therefore , a l l  future values would be 

determined by a (convergent) l inear combination of past values . 

2 . 2  SECOND GENERATION UTCS AND THIRD GF.NERATION UTCS PREDICTORS 

AS BOX -JENKINS PREDICTORS 

The second and third generat ion predictors of UTCS are 

l inear predictors , as may be readi ly verified . They are also 

predictors of the Box -Jenkins (B -J) type . By this we mean that 

t�ey are of the clai s of B -J  predictors for the so - cal led ARIMA 

processes or model s .  
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ARIMA(p , d, q) s tands for the general c lass of model s  for 

t ime series cons idered by B-J .  The values of p ,  d ,  and q (all  

small  integers) characteri ze a clas s ification of these models . 

The ARIMA (p , d , q)  model is produced by pass ing (discrete ) white 

noise  through a (discrete) l inear fil ter with p poles and q zeroes 

and subj ecting the result to d summations , leading to the d ' th 

order non - stationarity . ( See Appendix A for more detai ls . )  A 

particularly s imple and useful non- stationary model is  obtained 

when p=q=d=l g iving the ARIMA (l , l , l ) model . In  Section 5 . 4 . 6  

(Ref 1 )  Box and Jenkins show the exp licit form of the ARIMA (l , l , l ) 

predictor and i t  is eas i ly s een to b e  equivalent to the UTes third 

generation predictor (Part I Sec . 4 . 2 ) .  In Appendix F ,  we provide 

the algebraic details  showing the equivalence . Reading Appendix F 

should serve to fix the notions of certain aspects of notation 

and the formalism of  ARIMA filters especially as they relate to 

UTeS predictors . 

The UTeS s econd generation predictor (Part I ,  Sec . 4 . 1 ) 

operates on the difference between the present traffic count at 

a s ensor and the average of pas t  counts for the s ame time of day 

at the same s ensor . I t  operates on this difference in precisely 

the same manner as the third generation predictor acts on the 

traffic count itsel f .  I n  thi s  important respect the s econd 

generation predictor also fal ls in the realm of ARIMA (l , l , l ) 

predictors . The details  of this correspondence are shown in 

Appendix F .  

I f  the h is torical average i s  determined as an exponentially 

smoothed moving average of  past counts then , i t  turns out as shown 
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in Appendix F that the second generation predictor is  a predictor 

tbr a seasonal mult ip l icative mode l [ARIMA (l , l , l ) X ( 0 , 1 , 1 ) 2 8 8 ] itt 

the clas s ification of Box and Jenkins . (The subscript 2 8 8  

results from the fact that there are 2 88 ( 5  min . ) t ime periods 

in one day) • .  

The his torical average that is  used for s econd generation 

predictors and more general predictors bas ed on his torical data 

can be determined in a number of ways . In  Appendix E the merits 

of various orders of Fourier smoothing of his torical  averages are 

investigated . l t is concluded that the mos t  accurate predict ions . 

are based on very high orders of Fourier smoothing or on a 

s traight (unsmoothed) h is torical averages . As a cons equence al l  

the his torical predictors that are reported on outs ide of  

Appendix E are bas ed on s traight  (unsmoothed) his torical averages . 

See Appendix E for more detai ls . 

As the best  current predictors already fal l  into the clas s  

o f  ARIMA predictors this enabl es us to work outwards from this 

s tart ing point in an attempt to find s t il l better predictors for 

the traffic probl em .  Our general probe , whether it  be of the 

general B-J ARIMA predictors or of the boundaries of this class 

in order to establ ish i ts sufficiency , wi l l  have the s econd and 

third generation predictors as a s tarting pOint . 

2 . 3  THE APPROACH TO OPTIMAL BOX-JENKINS PREDICTORS AND VARIATIONS 

THEREON 

Our approach to  finding opt imum or best predictors wi l l  be 

based , as we have noted , on the Box-Jenkins class of predictors as 

derived for the ARIMA processes . However ,  we use a somewhat 
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different procedure for finding the best  predictor in this class 

from the one proposed by Box and Jenkins in their  book . Their 

approach is b as ed on identifying and calibrating an ARlMA model 

and then using the theoret ically derived optimum predictor for 

this model . Our approach is  bas ed on opt imiz ing the coefficients 

(or parameters) of the predictor of the form of the opt imum 

predictor for any given c las s ificat ion of ARlMA process .  The 

class ification in terms of p ,  d , and q ,  the three smal l  integers 

which determine the general ARlMA predictor form , is determined 

by optimizing ARIMA predictors of more than one form . 

How to set up a predictor of the proper form and how to 

optimize its coefficients are discuss ed in Appendix A. Our 

procedure opt imi zes the parameters of an arb i trary ARlMA predictor . 

The optimi zation is of  the performance of the predictor ,  as 

measured by meap sq4are e'rror , on a s ample of actual traffic 

count data* ( s ee Appendix D for dis cuss ion of data) . 

The technique employs an effic ient non - l inear iterat ive 

technique for finding a least mean square error predictor of a 

spec ified ARlMA type (us ing a g iven sample data set of the t ime 

series to be predicted) to determine the opt imum coeffic ients .  

The development in Appendix A i s  an important part of this study 

and is recommended for the reader with mathematical interes t in 

the technique . The mathematical development is put in Appendix A 

in order to make the rest of the report more accessible  to readers 

with less  mathemat ica l  interes ts . 

* The data was kindly furnished by Prof . John B .  Kreer of Michigan 
State Univers ity .  Prof. Kreer us ed this  data in a previous s tudy 
of traffic· predictor p�rformance . (Ref .  3) 
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Incidentally the B-J  "optimum" ARIMA predictor is opt imum 

only in the sense that i t  would give a least mean square error 

for an actual ARIMA process  of the given type . Our "optimi zed" 

predictor is of the s ame form but with coefficients calculated 

to g ive a least mean square error on a specific data set . Once 

one takes into account the method by which B -J  estimates the para­

meters of  the model from which the optimum predictor is  derived , 

the two methods  would  generally seem to be rather c lose in resul t s . 

If  they were not c:; los e ,  it  would seen that "optimiz ed" pred ictors 

would be preferable to "opt imum" predictors if calculated on large 

data set s s ince any discrepancy would presumably be due to  model 

failure . 

I f  one has a very long segment of sample data as we do here , 

the process of model identification or , equivalently , predictor 

form identificat ion is achieved by optimiz ing or fitting a few 

ARIMA predictors , i . e .  the predictors correspond ing to a few 

selec ted values of p ,  d ,  and q .  

In general we have two criteria for choos ing a pred ictor­

s implic ity and performance . By the simplest we mean the predictor 

with the fewest  parameters (which means in turn , p ,  d ,  q ,  each 

as sma l l  as pos s ib le) - the princ ipl e  of pars imony . This  conf l ic t �  

with the pr inciple of best performance in that add ing more para ­

meters  can always improve the performance of the optimized pred ictor . 

The resolut ion is  s imply to choose the predictor with the fewest 

coeffic ients which does not perform s ignificantly worse  than the 

highest  order ( or least  s imple) predictor optimized . 
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The question remains to determine when we have tes ted the 
h ighest order predictor that need be tested .  A tradit ional 

regress ion analysis  criterion is to stop increas ing the complexity 

when the improvement achieved becomes insignificant . As an 

ARlMA (p , d , q) predictor can be made �9re complex by increas ing 

both p and q ,  our criterion wi l l  s imply be that an ARlMA (p , d , q) 

predictor has enough complexity when an optimal ARIMA 

(p+l , d , q+ l) predictor does not perform s ignificant ly better . 

This also tes ts for d being increased by one s ince the ARlMA 

(p+l , d , q+l )  form includes ARlMA (p , d+l , q+ l )  and ARlMA (p , d+l , q) 

as special cases . 

Note that by adding two parameters at once we are giving a 

very l iberal opportunity for increased comp lexity to manifest  an 

improvement as the usual procedure is to add only one additional 

parameter at a time and to investigate whether that parameter 

produce s  a s ignificant improvement al l by itsel f .  We test two 

added parameters at once s ince we have discovered that (for traffic 

prediction on this data) they do not produce a significant improve ­

ment over ARlMA ( l , l , l ) .  Thus , this fact m�y as wel l  be establ i shed 

with one test which is at the same t ime quicker to perform and 

more comprehens ive . 

The relation between the present analys is and a traditional 

Box-Jenkins analys is bears further e lucidation . 

Our analysis is based on the techniques out l ined by B-J 

in their  book (Ref .  1 ) . Our intent has been to s imp l ify the 

procedure ( for our purposes) with no appreciable s acrifice in 

val idity of results . 
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Our first observation i s  that the B -J  predictors are of a 

form suitable for direct opt im izat ion . A technique for opt imi z ­

ing such predictors i s  presented in Appendix A .  The technique 

is not whol ly unlike that g iven by B -J for finding an opt imal 

es timate of the parameters for a fixed ARlMA proces s .  

The, chief difference between our analysis  and th.t of B-J 

seems to be � in the optimi z ation (or fitting) technique but in 

the method of finding the best model form- - i . e . in identi fying the 

best values for p ,  d and q .  We have short c ircuited the "model 

identi fication" s tage of B -J  which would be lengthy and somewhat 

inconclus ive in order to j ump immediate ly to a "base" model ( in 

this cas e  ARlMA (l , l , l) ) and then test its adequacy by "overfit ­

t ing . " This whole procedure might wel l  be considered to  fit  \ d  thin 

the program of model development as presented by B -J  in Ref .  I - ­

certainly they do not expect every technique and procedure they 

develop or present to be exercised in each application . Indeed 

B -J  s eem to emphas i ze model estimation and diagnostic  checking as 

the key elements ensuring model adequacy . For us "model estima ­

tion" equals " opt imizat ion" while  our approach to diagnostic 

checking is overfitting . 

Overfitting is a primary method of diagnost ic  checking in 

the program of B -J .  Sample quotes from chapter 8 (Ref 1)  on 

"Model Diagnostic  Checks" :  "No sys tem of diagnostic  checks can 

ever b e  comprehens ive , s ince it  i s  always pos s ib le that char -
. ' 

acteris t ics in the data of an unexpected kind could be over-

looked . "  Also s ee the last paragraph on p .  2 8 5  of Ref 1 (not 
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reproduced here hecau5e o f  i t s l ength . )  I t  should be added paren ­

thet ical ly that B-J are always concerned only with var i ous AR IMA 

models  (those  of higher order , in general) , when they express 

pos s ib le concerns about mode l inadequacy . They recommend over­

fitting as a means of seeing if a model is  inadequate . Overfit ­

ting , of  course , means fitt ing an ARIMA model of  higher order 

than has been expected to be suffic ient . 

In  short the mean square error criterion of the opt imi zed 

model  i s  the ultimate bas i s  for choos ing the model . As opt i ­

miz ing models i s  relatively s imple , our technique of examining 

what would amount to a gross overfit 'of an ARIMA ( l , l , l )  vs . an 

ARIMA(2 , 1 , 2 ) and then showing that that overfitted model is  neg ­

l ig ib ly better in measured performance might be expected to be an 

adequate way to estab l i sh the s impler ARIMA ( I , I , I ) for the data 

at hand . 

Thi s  is  analogous to the as sumpt ion that 5 th and higher 

degree terms of polynomial fit may be ignored if a second degree 

polynomial is  fit to some points and it  is  found that third and 

fourth degree terms have neg l ig ible  effect on the sum of the 

square error . We use an example of two extra terms proven neg l i ­

gible  in order to correspond to the two extra parameters in 

ARIMA( 2 , 1 , 2 ) .  But the pr inC iple is the same as if only one extra 

term were tested , ( i . e . , to infer the absence of higher order com­

plexity) because of the proven absence of one or more intervening 

orders of comp lexi ty . One certainly cannot prove , for example , 

that  the absence of third and fourth degree terms in a least squares 

fit to some point precludes with absolute certainty a s ignificant 

fifth degree fit . Nor can we even demonstrate that the fif�h degree 
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term i s  unlikely to be apprec iable  ( if the third and fourth degree 

terms in the f i t  are negl ig ible) except wi th a-pr iori as sumptions , 

the exact nature of which would be interesting to develop but would 

carry us outs ide our pract ical scope . 

A good discuss ion of the mathematical impl ications of the 

procedure seems to be lacking in the l i terature in spite  of i ts 

place in  common practice and i ts intuit ive reasonableness . 

Natrella ' s  book Experimental Stat ist ics (Ref . 7 )  (G . P . O . ) , note ­

worthy for its  emphas is on specifying sound accepted practice 

(but containing very l i ttle  explanation of the underlying theory) , 

may be quoted on this matter ( the general prob lem of  choos ing 

the degree for a leas t squares polynomial fi t )  : (p . 6 - 1 9 , Ref .  7) 

" In us ing a polynomial as an approximation to some unknown func­

t ion ,  or as an interpolation formula ,  the correct degree for the 

polynomial is usually not known . The following procedure usual ly 

i s  applied :  

( a) Carry through the steps in fitt ing polynomials of 2nd , 

3rd ,  4th , Sth • . .  degrees . 

(b ) I f  the reduction in the error sum of squares due to 

fitt ing the k th degree is  s tati s t ically s i gnificant 

on the bas is of the F - tes t whereas the s imil ar tes t 

for the (k+ l)  degree term is  not ,  then the kth degree 

polynomial is accepted as the bes t fitt ing polynomial . "  

This i s  evidently the princ iple we are s tat ing . As always (what ­

ever the approach to  model form select ion) one mus t  s top somewhere 

and wherever one stops an as sumption is inevitably involved . 

The acceptance of ARIMA ( 2 , 1 , 2) as the h i�hest order of com ­

plexity to be entertained is  inevitably arb i trary to  an extent . 
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However we give an important further j us tification for thi s  

choice by predisclos ing the , result that in all  tests with the 

data at hand the improvement ( in going from ARIMA (l , l , l ) to 

ARIMA ( 2 , 1 , 2 )) was cons istently very small  absolutely and re la­

t ively as will be seen subsequently . Finally we note that higher 

order ARIMA predictors (such as ARIMA (3 , 1 , 2 ) and ARIMA (2 , l , 3 ) )  

could have been entertained ( the quantity of data available  would  

support such complexity) but the tes ts were considered unneces ­

s arily extravagant . 

3'. 0 A GENERAL PROBE FOR OPTIMAL TRAFFIC PREDICTORS ; EXPERIMENTS 

ON OPTIMI Z ING ARIMA AND ADAPTIVE PREDICTORS 

3 . 1 OPTIMI Z ING AND COMPARING PERFORMANCE OF ARIMA(l , l , l )  AND 

ARIMA(2 , l , 2) GENERAL CONSIDERATIONS : 

As we have noted , an ARIMA(p , d , q) predictor is  to be cons idered 

sufficiently complex or more s imply " suffic ient" if the best 

ARIMA(p+ l , d , q+l )  predictor is  not s i gnificantly better . The use 

of the term " � ignificantly better" will  be  made more precise when 

we present the results . In some cases there may be s tatis t ical 

s ignificance to a certain difference between predictors but no 

practical s ignificance ( i . e .  n� substanti al difference) in the 

results . 

As we have irtdicated our modified Box-Jenkins analys is is 

mostly boiled down to three s imple  tasks : 

1 .  Construct the best performing ARlMA (l , l , l ) (one - step) 

predictor on a g iven s ample of data .  

2 .  Construct the best ARIMA (2 , l , 2) predictor on the s ame 

s ample . I f  we then s how that the ARIMA ( 2 , 1 , 2) predictor does not 
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perform s ignificantly bette r ,  then we know that the Box-Jenkins 

pred i ctor of cho i ce i s  ARIMA ( ! , l , ! ) or s i mp l er .  A l l s i mp l e r  

l, red i. c t o r s  thun AIU MA ( 1 , l , l )  li re  s pec i u l c n �w s  o f  A JU MA ( I , I , l )  
( i . e .  special range s of  the coefficients ) t herefo re , t he B - . '  
analys is  is  completed by : 

3 .  A parametric s tudy o f  the ARlMA (I , l , l ) predictor . 

I t  should be noted that this is  not a s tandard Box -Jenkins 

analys is  but i s  useful for estab l ishing the l imits  of predic ­

tive power achievable in the traffic predic t ion problem . We 

could extend our analys i s  if  neces sary to inves tigate more com ­

plex ARlMA pred ictors . 

The Box- Jenkins analys i s  is closest to our optim i zat i on pro ­

cedure when one i s  deal ing wi th one - step prcd i c t i on- - o r  s t a ted 

differently- - working out the ' opt imum one s t ep pred ictor resul ts  

in  ess ential ly an est imate of the Box -Jenkins ARlMA model . Box and 

. Jenkins then deduce theoretical ly the 2 - step predictor from the 

model parameters . We can optimi ze 2 -s tep ' predictors di rect ly 

by the methods given in Appendix A and we, do, so in certain cases , 

but the maj ority of our opt imi zat ion experiments are on one - s tep 

predictors as this s impl i fies the j ob and in theory should lead 

the way to optimum predictors of both the one- s t ep and t w o - s t ep 
type . There can be I i  t t le doubt that any conclus i ons w(' ('s t H h } i s h 
about one- s tep pred i ctors carry over to two - step predictors . 

As we have noted , the standard Box -Jenkins analys is i s  not sens i ­

tive to such a distinction . 
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We now recal l the form of the ARIMA ( l , l , l ) one - step predictor : 

1 )  " 
Zt+ l 

2) 
! = t 

:I: �!t- l 

0! + t - l  

+ (l - A ) Z t 

( 1 - 0) Z t 

The intermediate quanti ty ( t ime series)  I
t used in this prediction 

scheme is  called  the "exponential ly weighted moving average" or 

more s imply the "exponential moving average" of the t ime series 
" 

Z t . Z t+ l i s  the predic ted value of Z t+ l based on the ob served 

values Z t ' Zt - l ' Z t _ 2 , · · · etc . I f  we let Wt = Z t -Zt _ l and 
" ,. 
Wt = Zt - Zt - l  then equations ( 1) and ( 2) y ie ld : 

3) 

as i s  read i ly shown . *  

I f  Z t represents the traffic count at t ime t then , as shown 
. .  - � 

in Appendix E ,  (3) or ( 1) and ( 2 )  are of the form of the UTeS third 

generation pred ictor (0 replaces the B of Part I ,  Sec . 4 . 2 , whi l e  

A replaces B ( l -aj ) of  that sect ion) . I f  Z t represent s the 

i 
See d iscuss ion following equat ion F .  1 7  (Appendix F) . 
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difference between the current traffic count and the historical 

average , then (1) and ( 2), or (3)  are of the form of the UTeS 

second generation predictor with A = l - a-y and 0 = y in terms of 

the parameters a ,  y of Part I Sec . 4 . 1 .  

Henceforth ( except where noted in Appendix A) Wt wi l l  denote 
� 

the first difference of Z t ' that is  Wt = Zt - Zt - l . Wt is  the pre-
A A 

dieted value of  Wt at t ime t - l, thus Wt = Z t - Zt - l .  
Note incidental ly that the ARlMA( l , l , l ) two- step predictor as 

derived by Box and Jenkins has the s ame form as the one - step pre ­

dictor .  Since both predictors are derived theoretical ly from the 

s ame model , there is a relation between the two - s tep and one - s tep 

coefficients . If we denote the one- s tep coefficients by 0 1 , A l 
and the two- step coefficients by O2 , A 2 then B-J  der ive : 

4) 0 = 0 2 1 and 

We , of course ,  may optimi ze  either or both sets independently 

depending on the appl ication .  The theoretical relation has 

apparently not been noted in the traffi c  prediction l iterature . 

Equation 3 forms the backbone of our analysis . The exper i ­

ments to  fol low wi l l  cons ist of  add ing various terms to  the r ight ­

hand s ide and then optimiz ing the coeffic ient of all  terms s imul ­

taneous ly (us ing the methods of Appendix A) . 

The mos t  important experiments are tb de l imit the predictive 

power of the c lass of Box- Jenkins ARIMA predictors . The procedure 

will  be  the same for both the his torical data case and the non-

his torical data case ; the only difference , wi l l  be  that in the 
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his tor Ical  data c a s e  ( as w i th the Second Gene rat i on pr ed icto r ) 

we perform the tests and experiments on the difference (or the 

res idual)  obtained by subtracting the his torical average from the 

current count while  in the non- hi s torical case we work d irectly 

with the traffic c ount data . The fundamental experiment cons ists 

of optimiz ing equation ( 3 )  with ' respect  to  e and A .  Then the 

ARIMA ( 2 . l . 2) pred ictor as  expres sed thusly : 

5) 

is opt imized with respect to ao ' aI ' bo ' h I . 

We then compare the mean square error of the opt imum pre ­

d ictor of the form ( equation 3) ( i . e . , ARIMA ( I , I , I ) ) , with the mean 

square error of the opt imum predictor of the form ( equation 5 )  

( i . e . , ARIMA ( 2 , 1 , 2 ) ) . 

3 . 2 EXPERIMENTS WITH ARIMA (2 , l , 2) VS . ARIMA (l , l , l ) 

Several experiments were run to determine if higher order 

ARIMA predictors ( i . e .  with higher values of p ,  d ,  or q) offered 

advantages over ARIMA ( I , I , I ) .  As we have noted , the p re l i m i na r y  

results had all ind i cated that no more complex predictor  o f fe red 

an advantage over the ARlMA ( I , I , I ) in e i ther the h i stori cal or 

the non-historical cas e .  In the his torical case  the ARIMA predic­

tor acts  on the res idual after the his torical average is  subtracted 

out . 

The experiments each cons i sted of opt imiz ing an ARIMA ( 2 , 1 , 2 ) 

predictor on half of the available field data ( the other half 

was used to construct the historical average) or about 5 2 4 0  
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S -minute interval s  over 2 9  days for spec i f i c  sensors ( i . e .  

spec ific street locations) . The program and a sample run are 

g iven in Appendix B .  

I t  was expected that the ARIMA ( 2 , l , 2) would l ikely show a 

a greater advantage in t he case of non-hi s torical data since the 

his torical data predictors already perform much better and are 

expected to reac t  to unusual s i tuations which might actual ly 

call for a s impler predictor . We note that the ARIMA ( 2 , 1 , 2 ) 

predictor , unl ike the ARIMA ( I , I , I) actua l ly proj ects increas ing 

or decreas ing trends ( in general ) . 

The results  of the comparison of the opt imum AR IMA { 2 , l , 2 ) 

pred ictor with the opt imum ARIMA ( I , I , l ) pred ictor are shown in 

Table  1 .  Column 1 g ives the locat ion ( sensor , see Appendix D) , 
and Column 2 indicates whether the predictor is based on 
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TABLE 1 .  EXPERIMENTS COMPARING ARIMA ( 2 , 1 , 2 ) \'S . ARIMA(l , l , l )  

1 2 3 4 5 6 7 8 9 1 0  
% Dif- RMS 

Histor- RMS RMS ference Error 
ical Error Error ( 2 , 1 , 2) ( 0 , 0 , 0) 
Average ARIMA ARIMA vs  (no 

Sensor Used? ao a1 bo b 1 ( 2 , 1 , 2 ) ( 1 , 1 , 1) ( 1 , 1 , 1 ) change)  

1 no - . 40 8  . 3 7 9  1 .  2 7 - . 5 2 1  1 0 . 63 1 0 . 7 7  1 .  3 % 1 1 . 6 

1 yes - . 74 3  - . 531 . 1 1 2  . 59 2  8 . 92 8 . 94 0 . 1 8 %  

2 no - . 46 7  . 29 2  1 . 1 6 8  - . 5 0 1  1 3 . 09  1 3 . 2 4  1 . 1  % 1 4 . 6 

2 yes - . 8 1 7  - . 4 94  . 26 6  . 54 1 1 . 1 5 1 1 . 1 5 0 . 0  % 

3 no - . 5 8 9  - . 06 5  . 596 - . 1 2 1  1 1 .  3 1  1 1 .  3 9  0 � 7 % 1 3 . 2  U"I ..... 
r. 3 yes - . 8 2 3  - . 4 2 3  . 41 9  . 41 7  1 0 . 2 9  1 0 . 3 7  0 . 8  % 

4 no - . 496  . 09 . 7 5 - . 29 1 2 . 7 1 2 . 7 8  0 . 6 % . 1 4 . 3  

4 yes - . 8 3 - . 5 66  . 24 3  . 58 8  1 0 . 9 1 0 . 9 0 . 1 % 



historical averages o r  not . Co lumns 3 ,  4 ,  5 ,  and 6 gives the 

values of ao ' aI ' bo ' and bl respectively in equation 5 for 

the opt imized ARIMA ( 2 , 1 , 2 ) predictor . Column 7 gives the 

RMS (root over square)  error for the corresponding ARIMA 

( 2 , 1 , 2 )  predictor . Column 8 g ives the RMS error for the 

opt imi zed ARIMA (l , l , l ) predictor · ( i . e . , 2nd generat ion form 

if histor ical data is  used , 3rd generation form if  historical 

data is not used ) . Column 9 g ives the pe rcentage d i ffe r ence 

between column 7 und col umn 8 .  Column 1 0  g i ves  the I�MS e r ro r 

for the s implest  predictor , that is  the "non-p red ictor , "  which 

s imply bases its  prediction on the as sumpt ion that the traffic 

count will stay the s ame in the next t ime interval (th i s  can 

be cal led the ARIMA(O , O , O) predictor ) . 
Referring 

-io Table 1 we note the following obse;vat ions . 

In each locat ion ( i . e .  each sensor) the performance was in thi s 

order (best  to worst) : l . ARIMA ( 2 , 1 , 2) (historical ) , 2 ' ARIMA ( 1 , 1 , l ) 

(his torical) , 3 ' ARIMA ( 2 , 1 , 2 ) (non- his torical ) ,  4 ' ARIMA ( l , 1 , l ) 

(non- h i s torical ) , 5 · AR IMA ( O , O , 0) . The b i ggest improvement i s  i n  

go ing from ARIMA ( O , O , O) to  ARIMA ( l , l , l ) (non- h i s to rica l )  i . e .  i n  

going from a zero change ( "non- predictor" ) predictor to a UTCS 

.third generation type . The second 
._
�
.�_
rgest ch���� . 

l
.
s for pass ing 

from no use of hi storical averages to use of his torical averages 

( i . e .  between ARIMA ( 2 , 1 , 2 ) (non- his torical) to ARIMA( I , I , I ) 

(hi storical » . In contrast  it  is  seen that the pas sage from 

ARlMA( l , l , l ) to ARlMA( 2 , 1 , 2 ) (which gives rise  to the percent 

difference in column 9) in no case yields more than a 1 . 3 \ imp rove ­

ment in RMS error . Thi. s  occurred at sensor 1 for the non -

h i stor i cal  case . The improvoment i n  pa s s i n g f rom A R I MA ( l , 1 , 1 ) to 
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ARlMA( 2 , 1 , 2) was substantially less in the historical case than 

in the non -his torical case except at s ensor 3 which showed the 

greatest improvement , 0 . 8 % ,  for passage from ARlMA ( l , l , l ) to 

ARlMA ( 2 , 1 , 2) in the historical case and an essentially equal 

improvement in the non- historical cas e .  Although the s tat ist ical 

s ignificance for smal l differences using this method have not 

been determined , it  is  doubtful whether any of these improvements 

in going from ARlMA ( l , l , l )  to ARlMA( 2 , 1 , 2 ) is statist ically 

s ignificant . There is surely no practical s i gni ficance for an 

improvement of less  than 2 %  in the RMS error (which represent s 

less than 0 . 3% of the traffic count itself or les s than I 

vehicle  in 1 5  minutes ) . 

We note in pas s ing that if  ao+al+bo+bl � I there would be 

evidence that the ARlMA ( 2 , 1 , 2 ) predictor could be replaced by an 

ARlMA( I , 2 , 2) predictor ( to which i t  would be equivalent under 

those c ircumstances) which would in turn suggest check ing out 

ARIMA ( 2 , 2 , 2 ) . As the equal ity , ao+al +bo+bl = 1 , is seen not to 

hold even approximately ( in any of the cases in Table 1 ) ,  we have 

here no reason to entertain the poss ib i l i ty of a higher value of  d 

( i . e .  ARlMA( 1 , 2 , 2) or ARlMA ( 2 , 2 , 2 ) ) . 

We further note  that all evaluations in this sect ion are 

based on exponential moving average evaluations of the RMS error 

(all  with time constants greater than 500 t ime units ) . The RMS 

errors in each hor i zontal l ine in Table I are based on the same 

moving average weights and are thus quite  comparab l e .  The reduc ­

t ion in comparab i l i ty in pass ing from row to row i n  Tab l e  1 i s  
sl ight ( less  than a few tenths o f  a pe rcent ) . Tab l e s 2 - 8  ( to he 
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ARIMA( 2 , 1 , 2) was substantially less in the historical case than 

in the non- his torical case except at sensor 3 which showed the 

greatest  improvement ,  0 . 8 % ,  for pas sage from ARIMA ( I , l , l ) to 

ARIMA ( 2 , l , 2) in the historical case and an essentially equal 

improvement in the non-historical cas e .  Al though the s tat ist ical 

s ignificance for smal l differences us ing this method have not 

been determined , it  is doubtful whether any of these improvements 

in going from ARIMA (l , l , l )  to ARlMA ( 2 , l , 2 ) is statist ically 

s ignificant . There is surely no pract ical signi ficance for an 

improvement of  less  than 2 %  in the RMS error (which represents 

less  than 0 . 3% of the traffic count itself  or less than 1 

vehicle  in 1 5  minutes ) .  

We note in pass ing that i f  ao+al+bo+bl � 1 there would be 

evidence that the ARIMA( 2 , 1 , 2 ) predictor could be replaced by an 

ARIMA( I , 2 , 2) predictor ( to which i t  would be  equivalent under 

those c ircumstances)  which would in turn sugges t checking out 

ARIMA ( 2 , 2 , 2 ) . As the equal ity , ao+al+bo+bl = 1 ,  is seen not to 

hold even approximately ( in any of the cases in Table  1 ) , we have 

here no reason to entertain the pos s ib i l i ty of  a higher value of d 

( i . e .  ARIMA( I , 2 , 2) or ARIMA ( 2 , 2 , 2 ) ) . 

We further note that all  evaluations in this sect ion are 

based on exponential moving average evaluations of the RMS error 

(all  with t ime constants greater than 500 t ime units) . The RMS 

errors in each hori zontal l ine in Table 1 are based on the same 

moving average weights and are thus quite comparabl e .  The reduc ­

t ion in comparability in pass ing from row to row in Tah le 1 i s  

s l ight ( less  than a few tenths o f  a p e r c e nt ) . Tab l e s 2 - 8  ( to h e  
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introduced l ater) g ive RMS errors for ARlMA ( l , l , l ) predictors 

based on straight averages over the data base rather than long 

t ime constant exponential moving averages .  There is consequent ly 

a s l ight discrepancy between RMS errors in  Table 1 compared to 

Tables  2 - 6 ,  but i t  is  no more than 1 . 4 %  which appears to be 

quite negl igible .  This discrepancy in any case does not 

affect the comparison (here) of opt imum ARlMA ( 2 , 1 , 2 )  pre -

dictors v s  opt imum ARIMA ( l , l , l ) predictors which comparisons 

are based on identical exponent ially weighted moving averages . 

All the compar isons we have noted from Table  I are unaffec ted 

but we s imply cal l attention to the negl i g ible  discrepancy in 

the absolute minimum RMS error in the ARlMA ( I , I , I ) case 

(historical and non -historical)  between Table  I and Tables 

2 - 6 and the reason for this �egligible  discrepancy . 

To recap itulate : the results  indi cate that the improvement 

( in go ing from ARIMA ( 1 , l , l )  to ARIMA ( 2 , 1 , 1 ) )  i s  s l ight and 

probably  not stat ist ically s i gn i f i cant . The i mp l' o v cm(' n t  � 
never more than 1 . 3% in the root mean square and prel iminary 

est imates of the b ias introduced by opt imi z ing over the addi t ional 

parameters indicate that the improvement in most  cases d id no t 

exceed the b ias . There was less  improvement in the hi storical 

case than in the non -hi storical case' , but this is  not conclu-

s ive s ince the improvement of ARIMA( 2 , 1 , 2 ) over ARI MA ( l , l , l )  w a s  

marg inal and inconclusive in all  cases , i . e . for al l loca t i ons 

t ested , hoth hi s tori cal and non - hi stor ica l . 

Therefore ( conc e rn i ng po� � j h l c  i mp ro v emc n t  i n  p e r f o r m a n c e  

us i ng ARIMA{ 2 , 1 , 2 ) vs . ARIMA ( l , l , l )  h i s t o r i c a l  or non­

historical )  we conclude : 
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1 .  The improvement is  of  no practical s ignificance - - i . e . 

a reduction of the error by at mos t  . 1  to . 2  vehicles out o f  about 

1 0  to 1 5  root mean square error vehicles . 

2 .  There appeared to be no stat ist ica l ly s ignificant 
improvement . 

3 .  S ince the fi l ter was more complex , any gains could be 

quickly lost  due to "detuning" if traffic  conditions changed 

s l ightly . 

Al l thi s  tends to show that there i s  no advantage to us ing 

more complex ( higher order) ARIMA predictors over the s impler 

ARIMA ( l , l , l ) predictors . This  conclus ion i s , of course , based ort 

experience with a .specific data set ( s ee Append ix D) . The general ­

i z ab i l i ty o f  the conclus ion is  di fficul t t o  assess . Further stud i es 

of the type done here must be  done on other data from other loca -

tions , before this matter i s  cons idered closed .  However , there i s  

nothing in  the results  we obtained to  suggest that the results 

would be substantially di fferent on other data . 

3 . 3 IMPROVEMENTS THROUGH OPTIMALLY WEI GHTED NON-LINEAR ADAPTIVE 

TERMS , METHOD AND EXPERIMENTS : 

A s imilar set o f  experiments were run to see i f  non - l inear 

adapt ive terms could be added to the ARIMA ( l , l , l )  predictor t o 

improve i t s performance . S ince the non -histo r i ca l  case requ i res 

�hat the predictor adapt to rather l arge and qu i ckly  deve l op i ng 
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changes ,  the experiments on adaptation were all  carried out for 

the non- historical case . 

To show how the non- l inear it ies  were introduced , recal l the 

form of the ARlMA( I , I , I ) one - s tep predictor : 

,. ,. 
6 )  W ::s o Wt - l  

- AWt _ 1 t 

where W = Zt Z t - l 
,. ,. -

and W = Zt Z t - l .  t -t 

In pract ice , A i s  usually not extremely di fferent from S .  

I f  A = 0 then the whol e  predictor reduces to the s imple exponential 

moving average , i . e .  

,. 
I f  we denote Wt -Wt by 0 t 

then 0 t can be cal led the " overshoot" (or res idual ) .  I t  i s  the 

amount by which the predicted value d iffers from the actual value 

at t ime t .  

For the case of the exponential moving average 

The non - l inear terms by which we alter equat ion 3 can be of 

various forms . Several types of non- l inear terms were tr ied in pre­

l iminary experiments . The only one which showed even a h int o f  

promi se involved trying t o  adapt the coefficient of Q t . We fo llowed 
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up on th i s  w ith two exper iments to adapt the coefficient of  �t : 

ih the manner of  Trigg - Leach and with exponent ially weighted 

least squares . 

Accordingly sett ing : 
" " 

9) Wt = eWt _ 1  - AWt _ 1 + yA� t - l 

" 
where A is  some function of the previous values of Wt and W t ( i t 

is  not a constant , otherwise the last  term would be redundant) . 

The Trigg - Leach predictor ( Part I Sec . 4 . 1 . 2 . 3) is  equivalent to 

equat ion 9 with y = e = 1 and 

A = - I  ffit 1 
Therefore , we opt imi zed (equat ion 9 )  (over e , A , � )  with A = - Iffitl 
so that the Trigg Leach fi l ter would be in the family of  f i l ters 

optimi zed over . 

Recall  that : 

Q ( t) = pQ ( t - l) + ( l - p) �t 

A ( t) = (>i\ ( t )  + ( 1 - (»  I � t I O < p < l  

An experiment t o  determine the effects o f  optimi z ing a Trigg­

Leach type term appended to  an ARlMA ( l , l , l ) predictor ( i . e .  equa ­

tion 9 with A as j ust  defined) , us ing non -hi s torical data ,  was 

carried out on the data for one location only ( sensor 4) . The 

result was an improvement in the root mean square error (over that 

for a straight ARlMA ( l , l , l) of sl ightly over 2 . 0 % ,  i . e .  j ust under 

5 7  



0 . 3  cars per 5 minutes  out of  a root mean square error o f  1 2 . 2  

cars per 5 minutes . This  was better than the improvement obtained 

going from ARlMA( l , l , l ) to ARlMA ( 2 , 1 , 2) which was a reduction in 

RMS error of  less  than 1 % . 

The most  effective value of  p (when us ing the predictor on 

the data) was about . 8 5 to . 9 . For P = . 9  the coefficients in the 

fil ter ( equat ion 9) were e = . 8 5 ,  A = . 7 8 ,  0 = 1 . 0 .  This is to 

be compared to the optimi zed 0 and A for the ARlMA ( l , l , l ) predictor 

for sensor 4 (non-historical) :  e = . 4 3 ,  A = . 4 9 5 .  Clearly , the 

opt imum predictor was closer to a s traight Trigg- Leach smoother 

and as we noted the Trigg - Leach did result in the lowest mean 

square error ( the reduction was larger than for any other 

technique involving non-histor ical data only) . This was a 

surpri s ing result , but the RMS reduction of 2%  ( . 3  vehicles 

per 5 minute period) would  not appear to be of practical 

s ignificance , al though it was perhaps stat ist ical ly significant . 

Another s imilar type of adapt ive term was tr ied . Thi s 

term was derived for an optimum adaptive term us ing exponent ia l ly 

weighted least squares as fol lows : 

A = !:l!L 
D ( t) 

where 

r e t )  = p r ( t - I ) + ( l - p) O t 0t - l  

D ( t ) a pD ( t - l )  + ( l - p) O t 0 t 
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The bas ic idea is the s ame as with the Trigg - Leach approach : 

r t t) is smal l compared to D ( t) when 0 t is  uncorrelated with 

0 t - l but approaches . l ( for p near 1 )  when 0 t i s  highly correl ated 

to 0t - l ' Thus , if  p = . 6 ,  A (t )  measures the local correlation of 

the " overshoots" (or residuals ) , 
. 
o
.t

' and weights the current 0 t 
h igh if  the correlation i s  currently high . This  seemed to be a 

very attractive type of adaptation term . However , when tried for 

sensor 3 ,  non- historical , with p = . 6 , it gave essentia l ly no improve ­

ment in the mean square error . When we went to sensor 2 ,  however , 

( sensors 1 ,  2 and 4 had more rapidly changing patterns than did 

sensor 3) there was an improvement of the same order as ach ieved 

with ARIMA ( 2 , 1 , 2 ) i . e .  about 1 . 5 % in the root mean square error . 

Again , the improvement is  probably not statistically s ignificant 

and certainly not worth the added complex i ty in practical terms . 

Interestingly , the added term had a large e ffect on the opt imum 

coefficients even though the decrease in mean square error was 

s l ight : Without the adaptation term ( sensor 2 ,  one- step , non­

hi storical ) we obtained the fo l lowing optimum values : 

o = . 39 ,  A = . 46 

Adding the adapt ive term , we obtained : 

o = . 54 ,  A = . 46 ,  Y = . 54 

The adapt ive term was working but essential ly no improvement was 

achieved . This  is s imilar to the result obtained with the Trigg ­

Leach adaptive term . Our tentative conc lus ion based on these 

l imited experiments with adaptation is  that adapt ive terms  have no 
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s igni ficant predict ive power to add to ARlMA ( l , l , l) pred ictors 

(non- historical) .  More experiments of this type could be performed 

on data from locat ions expected to be cons iderably different from 

the Toronto locations s tudied here . Based on the above resul ts  

i t  would ,  of  course , be  quite  surpri s ing i f  an adapt ive predictor 

outperformed even higher order ARlMA predictors . 

The test ing of opt imi zed predictors with non- l inear terms 

included into the bas ic ARlMA ( I , l , l ) framework should be cons idered 

secondary to the test ing of optimized ARlMA ( 2 , l , 2) pred ic tors . 

From a theoret ical point of  view the ARlMA ( 2 , l , 2 ) predictors being 

part of the B - J  hierarchy are to be  g iven more considerat ion . As 

has j us t  been s een the test ing of  ARlMA( 2 , l , 2 ) predictors was much 

more systemat ic and extensive on this proj ect than was the test ing 

of non- l inear adaptive predictors - - cons i stent wi th the theoret ical 

pos i t ion . 

The results of  the general probe of higher order ARI�� p r e ­

dictors and of adapt ive predictors yielded one solid conc lus i on :  

No more complex predictor outperformed the ARIMA ( I , I , l ) pred ictor 

by more than 2 %  in these experiments . Other data might alter 

thi s  conclusion , however ,  the tentative conclusion is that 

traffic count data does not lend itself  to compl icated pred ict ion 

processes , but i s  best predicted by s impler predictors . This 

suggests that as a general rule traffic pred ictors should be 

ARIMA { I , l , l ) or s impler for both the hi storical data cas� 

(working on the res iduals after subtracting out the hi storical 

mean pattern) and th e non-historical cas e .  Comp l ex f i l t � r s  

should be  avo ided because even i f  they apparent ly perform 
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sl ightly better in a certain si tuation , they could b e  more 

sensit ive to chang ing condi t ion s .  

The property o f  retaining opt imal or near optimal performance 

under al tered conditions i s  somet imes referred to as "robustness" 

in s tat i s t ical parlance . *  Traffic predictors are in general sur­

pris ingly robust .  We shall  present some quantitat ive resul ts on 

the robustness of the ARIMA (l , I , I ) predictors below .  

4 . 0  PARAMETRIC STUDY OF  ARIMA (l , l , l ) SECOND AND THIRD 

GENERATION UTCS PREDICTORS 

flav i ng p r c l" e n t c d  some cv idence that mo re comp l ex R .:. J  pred ic ­

tors than ARlMA ( l , t' , l )  ( I . e .  than the Second Generation UTCS 
. 

predictor for the hi storical data case or than the Third Generat ion -

UTCS predictor for the non -historical case ) are not warranted for 

traffic predict ion , we now examine more closely the ARIMA ( I , I , I ) 

predictors . In so do ing , it i s  des ired to f ind the opt imum value 

for the parameters e and A for various s ituat ions , to exam ine 

the sens i t ivity of performance to variations in these  parameters , 

and to determinc what pract ical s imp l ificat ions and/or improvements  

a r e  po s s ib l e in  t e rms o f :  

1 .  U n  i. f0 1'1II p a r anw t t, r  vu l u c l"  fo r U l" C  i n  n l l C :1 l" C S . 

2 .  Hed uc t i on o f  o rd e r o f  ARIMA pred icto r .  

3 .  I ncreased respons iveness 

- - all  with neg l igible degradat ion of  performance below the best 

obtainable  with ARIMA ( I , l , l ) with opt imized coeffic ient s . 

*This term has vari ed usage in stat ist ical l iterature ; the usual 
context refers to the behavior' of certain stat i s tics  derived for 
normal dis tributions as . they are used on non-normal data . 
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' I ' u h l o � 2 ,  3 ,  " li n d  !) :i ho w  t h e v a l ue s o f  (} a nt.! ). ( se e  equa t i on s  

1 ,  2 ,  & 3) which opt im i z e  the one - s tep and two - step predictors 

for both the hi s torical and non-historical case . Thus Table  2 

g ives the optimum values of 0 and A for the (UTeS) �econd Genera ­

t ion I - step predictor ( for this data) , Table  3 the optimum values 

for a Second Generation two - s tep predictor , Tab le  4 the optimum 

values for a Third Generatio� one - s tep predictor and Table  5 the 

optimum values  for a Third Generat i.on two- s tep predictor . The 

three error measures used in all  four tables are : root 

mean square , root mean fourth power , and mean absolute v a l u � . ( Sec  
Table  2 . )  The root mean fourth error i s  more sens i t ive to 

infrequent large errors while  the mean absolute error is more 

s ens itive to frequent smaller errors , both as compared to the 

bas ic root  mean square measure . 

Tables  C - l  to C- 4 Appendix C l is t  the performance (as 

evidenced by the s ame three error measures as us ed in Table 

2 - 5 ) of various ARlMA (l , l , l ) predictors under various s tated 

condit ions . The fact that a uni form set o f  coe fficient s ( a , � ) 
can be used to obtain nearly opt imum performance is high l igh t ed 

in Tables 6 - 9  which arc to be comparod with Tab l e s  2 - 5  t o  s e e  

how smal l the increase in root mean square error is  in e a c h  c a s e - ­

i . e .  for each sensor , one - step or two - steps , hi storical or non ­

h i storical - -when one uses a s ingle set of  coeffic ients for each 

sensor . We have shown in Tables  6 - 9  the effect of us ing the 

smallest  optimum e and � for al l  four sensor� . Thus , in com ­

par ing Table  2 and 6 ,  we find that i f  the opt imum values for 

sensor 1 are used for sensor 4 (histor ical , one - step) t he root 

mean square error increases only from 1 0 . 89 to 1 1 . 0 2 and t he 

increase is  smal ler for the othor sensors . 
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Table  2 

Historical Average 

I - step 

Opt imum e and A 

Sensor#l e A 
:! 1 / 2  

( o  ) 
:4 1 / 4  

( o  ) 1 0 1 
1 

2 

3 

4 

. 79 : 7 4 8 . 9 0 1 3 . 4 7 6 . 3 8 5  

. 8 7 2  . 81 1 1 . 07 1 5 . 3 5  8 . 5 35 

. 8 5 . 8 0 1 0 . 40  1 5 . 31 7 . 9 3 5  

. 8 8 . 8 4  1 0 . 89  16 . 50  8 . 2 6 8  

and measures of predict ion error , 

1 / 2  (�) = root mean square (RMS)  error 

:4 1 / 4  
( o ) = fourth root of the mean of the fourth power of  the 

error 

1 0 1 = mean absolute value of error 

These measures are decreas ingly sens it ive to pers is tent smal l  

errors and increas ingly sens it ive t o  short last ing large errors as 

one passes from 

:4 1 / 4  
t o  ( o  ) 
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Table  3 

Historical Average 

2 - step 

Opt imum e and A 

- 1/2  :4 1 / 4  
SensorH e A ( 15 2 ) ( 15 ) 1 15 1 

1 . 8 1 . 7 79 9 . 1 8 1 4 . 3 3 8 . 0 44 

2 . 8 8 . 8 6 1 1 . 2 7  1 5 . 7 4  8 . 6 7 6  

3 . 84 . 8 8  1 0 . 5 5  1 5 . 8 8  7 . 99 0  

4 . 8 8  . 9 0 5  1 1 . 04 1 6 . 7 8  8 . 33 8  

Tab le 4 

Non-historical 

I - step 

Optimum e and AI 

SensorH e A 
:'Z 1/ 2 

( 15 ) 
:4 1/4  

( 0  ) 1 15 1 

1 . 26 . 39 1 0 . 7 3  16 . 5 9 7 . 5 65  

2 . 39 . 46 1 3 . 1 4  1 8 . 2 0 1 0 . 1 2 0  

3 . 5 7 . 5 9 1 1 . 3 7  1 6 . 44 8 . 7 6 3  

4 . 4 3 . 4 95  1 2 . 96 1 8 . 6 0 9 . 6 74  
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Sensorlt e 
1 . 09 

2 . 30 

4 . 3 2 5  

Table  5 

Non- his torical 

2 - s tep 

Optimum Values for e 

A 

. 36 

. 4 64  

. 5 2 

:2 1 / 2  
( a  ) . 

. 

1 2 . 5 5 

1 4 . 9 6 

1 4 . 2 9 

6 5  

and A 
:4 1 / 4  

( a  ) 1 6 1 
1 9 . 4 3 8 . 7 0 6  

2 1 . 0 0 1 1 . 404  

2 0 . 7 0  10 . 8 0 1  



Table  6 

Historical Average 

I - s tep 

Other Smal ler Values o f  e and A 

SensorH e " 
:-z 1 / 2  

. (.6 ) 
:4 1 / 4  

( 6  ) 1 6 1 
1 . 7 7 . 7 2 8 . 91 1 3 . 4 9  6 . 39 5  

2 . 79 . 74 1 1 . 1 5  1 5 . 39 8 . 6 2 2  

3 . 79 . 74 1 0 . 4 5  1 5 . 30 7 . 9 84  

4 . 7 9 . 74 1 1 . 0 2  1 6 . 60 8 . 37 8  

e = . 7 5 A = . 7 5 

SensorH 
:-z 1 / 2  

( 6  ) 
:4 1 / 4  

( 6  ) 1 6 1  
1 8 . 91 1 3 . 4 2 6 . 39 6  

2 1 1 . 1 9  1 5 . 4 3  8 . 6 58  

3 1 0 . 48 1 5 . 3 7 8 . 0 09 

4 1 1 .  0 6  1 6 . 6 6 8 . 4 1 2  
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Tab le 7 

Hi storical Average 

2 - s tep 

Other Smal ler Values of e and A 

Sensor" e A 2 1 / 2  
( �  ) 4 1 / 4  

( 6 ) 1 6 1 
1 . 8  . 7 9 . 2 1 1 4 . 1 8 6 . 54 3 

2 . 8 1 . 7 7 9  1 1 . 35 1 5 . 7 5 8 . 7 4 9  

3 . 81 . 7 79  1 0 . 6 1  1 5 . 9 2 8 . 04 4  

4 . 8 1 . 7 79  11 . 1 6 1 6 . 9 0 8 . 4 46  

e = . 8  A = . 7 5 

Sensor#  
:z 1 / 2  

( 6 ) 
:4 1/4  

( 6 ) 1 6 1 
1 9 . 1 9 14 . 2 5 6 . 508  

2 1 1 .  3 9  1 5 . 7 9  8 . 7 8 1  

3 1 0 . 6 5 1 5 . 96 8 . 0 7 7  

4 1 1 . 2 2 1 6 . 9 7 8 . 4 8 5  

e = . 7 5 A = . 7 5 

Sensor #  
:z 1/2  

( 6 ) 
:4 1/4  

( 6 ) 1 6 1 
1 9 . 2 0 14 . 1 8 6 . 5 2 6  

2 1 1 . 4 5  1 5 . 8 5 8 . 8 3 2  

3 10 . 6 8 1 6 . 0 2 8 . 0 99 

4 1 1 . 2 6  1 7 . 01 8 . 5 2 4  
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Sensor" 

' I 

2 

3 

4 

Sensor " 

1 

2 

4 

e 
• 2 

. 26 

. 26 

. 2 6  

Table  8 

Non -historical 

I - s tep 

Smaller Values o f  e and A 

A 
:-z 1/ 2 

( 0 , ) 
:4 1/4  

( 0  ) 
. 3 7 10 . 7 4 1 6 . 57 

. 39 1 3 . 2 0  1 8 . 2 2 

. 39 1 1 . 7 3  1 7 . 1 7  

. 39 1 2 . 8 8  1 8 . 7 5 

Table 9 

Non - his torical 

2 - s tep 

a = . 2  A = . 4  
... 

:z 1 / 2  
( 0  ) 

:4 1/4  
( 0  ) 

1 2 . 5 7 19 . 50 

1 4 . 99 20 . 9 2 

1 4 . 39 20 . 81 

,, ' -' - 68  

1 0 1 
7 . 5 7 8  

10 . 1 7 6  

9 . 0 1 6  

9 . 7 8 9  

8 . 698  

11 . 4 69 

1 0 . 8 9 5  



Tab les 6 - 9  sh�w the apparent extreme insensitivity 

of the error to increas ing or decreas ing A and especially a ,  sub ­

s tantially .  One may observe not only the root mean square error 

but also the mean absolute error and the root mean 4th error ( the 

fourth root of the mean of the fourth powers of the errors or 

res idual s) . 

The use of smaller  than optimum values of  a and A therefore , 

does not apparent ly  decrease the mean per formance suhstant i a l l y .  

The decrease actually increases the robustness . Robustness i s  a 

stat i st ical term indicat ing the lack of sensitivity ( i . e . cr i t i ·  

c�lness )  o f  performance to non- standard o r  unexpected conditions . 

We use the term here to denote  the property of a predictor to 

perform wel l  in a traffic s ituation which is  somewhat different , 

for any reason , from traffic s i tuations cons idered in cons tructing 

or tuning* the predictor . I t  can be seen that if  tuning i s  

cr itical the predictor i s  not robust .  Thi s property i s  clos ely 

related to but not ident ical with responsiveness . The fac t 

that lower values of a and A lead to increased robustness 

can be seen from the fact that the sensit ivity** of performance 

to decreas ing a and A is small . As we noted when a set  of 

values of a and A were selected which were es sent ially opt imum 

*By "tuning" we mean cal ibration , that i s  the select ion of  specific 
values of the parameters to fit the speci fic traffic s i tua t ion . 

* * In this sense " sens it ivity" refers to the crit icalness  of the 
tuning . The tuning i s  sens it ive if a sl ight change in condit ions 
requires di fferent parameters for nearly optimal performance . 
Thus in our present terminology " sens itivity of tuning" = "non­
robustness . "  Obviously " sens itivi ty" i s  not equivalent to 
" respons iveness" , in effect more l ike the oppos i te w i l l  be the 
cas c .  
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at the locat ion where the smallest  opt imum 0 an� A were obta ined , 

these values of 0 and A resulted in predictors which were nearly 

optimum at the other locat ions ( the loss in performance below 

optimal was always less  that 4 %  and usually less than 1 % ) . Thus , 

by decreas ing 0 and A we reach the optimum values for a wider 

range of  conditions with l ittle  s acrifice in performance from 

conditions which are opt imized by higher values of 0 and A .  
Furthermore , i t  can be shown that the smaller va lues o f  

o and A lead t o  more responsive predictors - - i . e . , predictors 

which respond more quickly  to chang ing cond i t i on s .  Thus , 

for example , i f  the 0 and A for a predictor us ing historical data 

could be  reduced subs tant ially without degrading mean performance , 

the response of  the predictor under completely atypical traffic 

condit ions could  be nearly as good as a non-historical predictor . 

For the non-historical case the optimum 0 and A vary widely 

and in some cases (when 0 i s  very small )  there is  less s ens i t ivity 

to increas ing rather than decreas ing 0 .  In these s i tuations 

moderate values are to be recommended . 

For the historical case a value of . 9  has been recommended 

(e . g .  see Ref .  3 , 6 ) in the past for 0 .  Thi s  value might have 

been chosen as optimum for certain locat ions , but as we have seen 

i t  i s  best (in the historical case at least )  to take as smal l a 

value as pos s ib le for 0 as i s  cons istent with � optimum perfor­

mance at all  locations . Thi s  w i l l  often be near the optimum value 

of 0 at the location where the optimum value is least . This means 

that an average or median of  0 and A over various locations is not 

recommended , rather the l east near optimum values should be chosen . 

We see that for these four locations in Toronto an average value 
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for 0 of about . 8 5 and for A of about . 8  would have been chosen 

but 0 = . 79 ,  A = . 74 or 0 = . 8 ,  A = . 7 5 would in al l probab i l i ty 

be better for universal use at these locat ions or any with s imilar 

conditions . By "universal use" we refer to the us e of a s ingl e  

set of  parameters a t  a large number of locations . By choos ing a 

s ingle s et which perform wel l  at many locations we achieve several 

ends : 

1 .  Implementation i s  eas ier as the predictors do not have 

to be tai lored to each location 

2 .  Individual determination of parameters at each location 

is subj ect to error and the opt imum values are such as 

to determine predi ctors which are more sens i tive in per ­

formance to actual conditions than suhopt imum un ive rsa l 

values 

3 .  As conditions change over a long period o f  t ime the pre ­

dictors would  not degrade in performance so quickly 

4 .  Respons iveness  to atypical traffic patterns ( special 

events etc . )  would be  greater 

Note that in the non-his torical two - s tep case , 0 = . 2 ,  and 

A = . 4  g ives very near optimum result s  in each instance . In the 

past , va lues of 0 as high as . 9 5 have been proposed for th is case 

( soe  Ref .  3 ,  also Ref .  2 of Part I ) . Such high values are not 

wu rranted for th i s  Toronto data . 

We noto  inc i dentally the degree to which the theoret ical 

equation derived by Box and Jenkins to relate the optimum I - s tep 

(ARIMA ( l , l , l ) )  predictor to the opt imum 2 - s tep predictor is  

e ither confirmed or contradicted by this data . 
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We reca l l the theoret i ca l  ro l at ion between the 0 nnd A fo r o n o ­

nnd two - step p red i c to r s . name l y  equat ion ( 4 ) :  0 2 = 0 1 ' 

� �:I A l ( l +0l - � l ) .  The agreement between the actual opt imum two - step 

coefficients and that derived by the theoretical formula from the 

one - s tep coefficients appears to be satis factory in the hi storical 

case  and unsatisfactory in the non-historical case . For example , 

for the historical case one - s tep coefficients for sensor 1 we 

have 0 = . 7 9 ,  and A C . 7 7 4 . The theoretical formula then gives 

for the two - step case 0 = . 7 9 ,  A C . 7 7 7  compared to the actual 

values 0 CI . 8 1 ,  � = . 7 7 �) .  For the same sensor non- histor i ca l  0 1  = 
. 2 6 , ' A I a . 3 9/yield O2 :I . 2 6 ,  � 2 :I . 34 ( theorectical ) whi l e  the 

actual values are O2 :I . 09 ,  A 2 :I . 36 .  However , if we cons ider the 

extreme insensit ivity of the root mean square error to the co ­

efficients ,  the theoretical ly der ived coeffic ients ( for the two ­

step case)  ' are  nearly as good as the actual opt imum two - step 

coeffic ients for both the histor ical and non- hi stor ical cases . 

The better agreement with the theoret ical B -J  relations in the 

h i s torical data case i s  cons istent with the hypothes is  that  the 

re s i dua l s  aftor sub t ract ing o f f  h i storica l ove rage dat a i s  mor� 

1 ike a true J\R I MJ\ ( 1 , 1 , 1 ) proc�ss  than is the rnw t raff  i t"  count 

data i tself .  

Finally we recal l as  noted in  Part I that predictors based 

on historical average data (Second Generat ion) have been shown to 

perform consis tently better than those not based on historical 

data (Third Generation) . - The data used in this s tudy has already 
been used by Kreer (Ref .  3)  in his s tudy which es tabl ishes thi s  
point . As the values of 0 and A found here to be optimum are 
di fferent from those reported by Krcer we note that Tables 2 , 3 ,  
4 , 5 us ing the opt imum point support these va lues of  0 & A very 
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� t ron g l y .  (We have already pointed out the same effect in 

Table  1 ) . The difference in RMS error between Second and Third 

t�nerat ion predictors with opt imized coeffic ients vary from 1 0 %  

to 2 0% for I - s tep predictors and from 30 % t o  4 5% for 2 - step pre­

dictors as may be  s een from Tables 2 through 5 .  For example , 

Tab le 2 shows that at sensor 1 ,  us ing a h i storical based one - step 

predictor , the RMS error was 8 . 9 ,  whi le  us ing a non-h istorical 

one - step predictor the RMS error was 10 . 7 3 .  The differences in 

RMS error between Second and Third Generation ( i . e . , between 

his torical data and non-historical data) is thus far larger than 

any differences in RMS error produced by going to higher order 

ARlMA or adaptive predictors whi ch as we noted were not of  

pract ical s ignificance . 

5 . 0  Conclus ions 

A new technique has been developed to optimi ze  ARlMA ( Box 

Jenkins (Ref .  1 )  predictors on data . The technique eas i ly  al lows 

a general form to be optimized so that the bas ic ARIMA form can be 

augmented by non- l inear adaptive terms and even by more genera l 

terms such as terms involving concurrent t ime series (multichanne l 

data) . 

The technique has been app l ied to a sample of  traffic count 

data from Toronto , Canada large in extent ( thousands of points)  but 

l imited in s cope ( four locations ) . 

The conclus ions drawn from the ana lys is  are that traff ic 

volume is hest  prcd i cted�h v ery Nimpl e  predic tors when on ly 

non-histor i ca l  dotu , i . e . , neor - pa s t va lues o f  the t ra f f i c  

counts themselves , are being used , and with s imilar techniques 

appl ied to the res iduals after the historical average is subtractec 
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of f  when his torica l  da ta  is used . In  short , the Second and 

Third Generation predictor forms were not found to be  more 

sffect ive than more compl icated predictor� � __ 

This conclusion was arrived at by comparing the performance of 

ARlMA ( 2 , 1 , 2) predictors optimi zed on the same data as ARIMA ( l , l , l ) 

predictors . The ARIMA (2 , 1 , 2 ) predi ctor did not perform s i gni ­

ficantly better than ARIMA ( l , l , l ) predictor : improvement in 

performance observed at any sensor (his torical or non-his torical )  

was 1 . S % in  the RMS error . Thus , it  was concluded that 

higher order ARIMA predictors are not warranted on thi s  data .  

A more l imited experiment indicated no substantial improvement 

us ing non- l inear adaptive terms (optimally comb ined with the 

ARIMA (l , l , l) terms ) . 

Due to the l imited nature o f  the data and the l imited experi ­

ments us ing adapat ion , the conclusion must  be cons idered 

tentat ive . However , the conclus ion that the Second and Third 
, 

Generat ion UTCS predictors - ( i . e . , ARIMA ( I , l , I ) )  can be made 

opt imal or near opt imal through the right choice of coefficients 

was persistent in al l exper iments and there is no evidence to 

lead one to expect it  to fail . 

Consi stent results can however strongly suggest  pract ical 

l imitations as we have noted . 

Further observations and recommendations about the details  

of implementation of traffic predictors have been given . The need for 

responsiveness  and "robustness"  as wel l  a,s good mean performance 

has been advised ; thi s  leads to an altered choice of paramenters 
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se l ected . I n  gene ra l ,  sma l l e r  va lues o f  0 a n d  A arc recommended 

than are ci ted in previous l iterature on UTes predictors . It 

appears that smal ler values are optimal in some cases whi le  in 

others the sacrifice in mean performance is  negl ig ible . 

One of the mos t  important results of  this  s tudy was the 

development of a technique for opt imizing ARlMA predictors and 

ARlMA- type predictors containing non-ARlMA or generali zed terms . 

The mathematical detai ls  are g iven in Appendix  A of  this report . 
--.- -

In the traffi c  prediction context the largest potential for 

th is  predictor optimizat ion capabil i ty would appear to be in 

the ab i l ity it affo rds to eva luate the enhancement capah i l i t i es 

o f  the ba s i c pred i ctors wi th externa l in fo rmu t i on i . e . , w i t h 
informat ion der ived from othe r real - t ime quant i t i es , suc h u s  

traffic a t  other locat ions o r  with mean occupancy , wh ich is 

measured at the same sensors that measure the volume be ing 

predicted . 

A continuation of thi s  s tudy into the multichannel aspects of 

�- traffic predict ion (j ust  al luded to) may be  poss ib le wi th pres ent ly 

available data . Some data for the city of  Ind ianapol i s ,  

obtained from Pro f .  Kreer at the same t ime a s  the Tornoto data , 

conta ins occupancy informat ion . The I nd i a na po l i s  data was used 

in Kreer ' s study o f  Second and Th ird Genern t i on t r n f f i c p r ed i c t o r s , 

but occupancy data has apparently not been inc l uded i n  t r a f f i c  

volume predictors .  Also , the Toronto data provides the pos s ib i l i ty 
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o f  i nclud i ng data f rom sensor s  at mult iple  locations . The Toronto 

and Indianapolis  data would provide a start at such a wider inves ­

tigat ion into traffic volume predict ion us ing mult iple sens or dat� 

and occupancy data . 

Eventually the methods we have developed should be  applied to 

a wider variety of data in an attempt to further explore and define 

optimum traffic predictors . Data from other locations should be 

obtained to further exp lore the poss ib i l i ties of higher order ARlMA 

predictors as wel l  as non - l inear adapt ive predictors which were 

both tentat ively ruled out as they did not substant ial ly improve 

predictive capab i l i ty on this data . 

Th e methods n rc now nva i l ab l e [or r e l a t i v e l y  easy n na l y s es � 

Further applicat ion should be quick nnd i n ex p e n s i v e  once data i s  

obtained . 
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The Box -Jenkins ARlMA models are considered to yield the most 

accurate , sophisticated and comprehens ive systemati� analysis of 

t ime series prediction currently avai l ab le  for general use .  The 

term "ARIMA" s tands for "AutoRegress ive !.ntegrated Moving �verage . "  

To as sume tn�t a t ime s eries ( such as a s equence o f  five minute 

traffic counts) is m04el led by an ARlMA proces s is to assume that 

the development (in t ime) o f  the real time series proceeds as mi ght 

some true (hypothet ical) ARlMA process . Al l the ARIMA processes  

a re generated by finite iterative linear trans formations on a 

sequence of  uniform var iance , normal ly distributed , uncorre l ated 

"random shocks . "  I t  i s  convenient to refer to the latter as t ime 

s ampled random noise . The reader i s  referred to Reference 1 for 

a complete description of the ARIMA models  and the ir appl icat ion 

but here we describe very briefly a few salient features . 

The s implest finite expl icit express ion o f  the general 

ARlMA (p , d , q) model i s  given by Equat ion 4 . 2 . 1  o f  Reference 1 :  

AI ) Zt = �l Zt - 1 + · · · +wp+dZt - p - d  - a lat _ l · · · aq" t _ q+at 
where Z t repre sents the model led (ARIMA (p , d ,"q ) ) t ime series , and 

at represents the series o f  random shocks (d iscrete sampled white 

noise) , and wk ' a l (k= l , p+d ; l= l , q) represent constant mul tipl iers 

The wk ' s and a l ' s are arbitrary subj ect  to certain constraints - ­

both equality constraints and inequality constraints . The equality 

constraints l imit the number o f  independent parameters (degrees of  

freedom) to p+q (p independent parameters determined by w1 ' · · · . wp+d 

a n d  q i ndependent parameters determined by 6 1 , . . .  , 6q ) .  

The equal i ty res trict ions on the w ' s are quite  important and 

represent a mode l l ing of the "order of non - s tat i onarity . "  Th i s  
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can be expl icated at the expense of  making the model impl ic i t  for 

Z t o Thus let Wt = VZ t = Zt - Z t - l  let v2 Z t = VWt = Wt - Wt - l  = 

Z t - 2 Z t _ l + Zt - 2 and in general let vdZ t represent the dth dif -

. 1 Vd+l Z VdZ VdZ I th  B x ference of Zt ; in part lcu ar t = t - t - l ' n e 0 -

Jenkins model l ing it  i s  assumed that even if Zt is non - stat ionary , 

then vdZt is  stationary for some ' smal l  integer value of d .  Thus , 

if one considers A 2 )  Wt = vdZt rather than Zt itself , Wt will  

be stat ionary and so i t  i s  modelled as an autoregres s ive moving 

average process . 

A3) Wt = � 1 ,Wt _ l+ " ' +�pWt _p- 9 , a t _ I . . .  - O qat _ q+at 
Equat ion A3 together w i t h Equa t i on A2  is equivalent to Equat ion A I . 
The quantit ies at and at are the same b e twe en Equa t i o n s  Al  and A3 . 
The wk determine the � k and vice versa when t h e  order o f  d i fferenc ­

ing Cd) is  taken into account . Now a t ��
nd �k are subj ect only to 

inequal ity constraints ensuring stat ionar ity and invert ib i l ity 

( see Reference 1 ) . Equation A3 is said to determine an ARMA (p ,q )  

process , Wt ; while  Z t having Wt as its  d ' th d ifference is  ca l led 

an ARlMA (p , d , q) process . 

Equat ion A3 for the ARMA process  is  evidently very c l o s e  

in form to  Equat i on Al  for the  ARIMA proces s .  In fact , the form 

o f  Equat ion A3 subst i tut ing p+d for p and Z for W woul d be e x ac t l y 

t h a t  o f  Equa t i on AI . The d i fference is  in the res trict ions on �k 

a n d  "' k ' Con s i d e r  fo r the moment an ARMACp , q )  p r o c e s s  Z t ' T h en : 

A4 ) Z t = � l Z t _ I + · · · + � p Z t _ p - O l a t _ l - · · · - a q a t _ q + a 
t 

According to Box -J enk i n s , the one step pred ic tor Z t (or �uch H 

process  i s  given by 

where Z t is  the predicted value of  Z t based on Z t _ l , Z t _ 2 , . . .  ( i . e . on 
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all  values of  Z up to T =t - 1 :  hence i t  is  cal led a one step 
T 

predictor s ince i t  only predicts one s tep ahead) . Equation AS 

follows from the rules given by Box - Jenkin ' s  equations 5 . 1 . 1 8 and 

5 . 1 . 2 2 (Reference 1 )  and the sequels .  In  particular , aT is  estimated 

by ° when T =t ( or any other future t ime) and aT i s  est imated by 
� 

Z - Z when T=t - 1 , t - 2 , t - 3  • . .  (any present or past t ime) . The net T T 
effect of  these rules (as appl ied here) is  that the recurs ive 

Equat ion AS for the (on - step) predi ctor i s  obta ined from A4 by 
� 

replac ing a ( for all  T )  by Z - Z . A s imilar equation to AS could T T T � 
be written down for an 1 - s tep predictor .  Zt ( 1) for an arb itrary 

ARlMA (p , d , q) process . However , the coeffic i ents would be subj ect 

to constraints or s ide condit ions . Thi s  is  a minor annoyance , but 

we shall  avoid deal ing expl ic i t ly  with i t  by l imit ing ourselves 

at first to the form (AS) , which also serves as the predictor for 

Wt = Zt - Zt - 1  for an ARIMA(p , l , q )  process . ( I nc identa l ly from this  

point on in this Appendix and elsewhere throughout this report Wt 
a lways refers to the first di fference of  Z t . Earl ier in this 

Appendix and in Reference 1 ,  Wt i s  used to refer to arb itrary 

differences  of  Zt . )  Thus our development w i l l  be expl icit ly in 

terms of Zt ' where Zt will be predicted according to an optimal 

one - s tep predictor for an ARMA (p , q) proces s  and so Zt wi l l  ei ther 

be the t ime ser ies to be predicted ( in our case the traffic counts 

if  we seek an ARMA (p , q) = ARIMA (p , O , q )  predictor) or else Zt w i l l  

be  the f ir st  d i f fe rence of  the  t ime series to be  pred i cted ( i f  

we � e e k an A R I MA ( p , l , q ) p red i c t or ) . 

We now adopt a general  no ta t ion to cove r t h e s e  t wo s p e c i a l 

cases  and in so doing cover a wider c l a s s  w i t h  no a dd i t i o n a l  
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encumbrances .  To this end let VT denote what i s  to be predicted 

at t ime T . Thus i f  we seek a one� step pred ictor for an ARIMA (p ,O , q )  

process ,  VT would denote Z T +I . For a one - step predictor for an ARlMA 

(p , l , q) process  VT would s tand for WT + I (where Wt 
= Zt - Z t _ 1 ) .  For 

an R, - step predictor for an ARIMA (p , ° , q) proces s ,  V T could denote 

ZT +R, ' and so  on . We denote the va1ue of VT as predicted at time T 
" 

(when VT i s  not yet known) by VT so that for a one � s tep ARIMA (p , l , q )  
" " " 

predictor , VT represents  WT +I , etc . Now VT i s  to  be constructed as 

a l inear comb inat ion of quant i ties a l ready known at time T :  

A6 ) '" 
V ::: T 

where ' the Ck (k=l ,  _ _ _  , L) are constants and the Xk 'T are cons tructed 
" " 

from VT � j (j  > 0 )  L e . , past values o f  VT and from quant it ies Yk , T 
(k=l , . • •  , L) available  at t ime T which do not depend (expl ici tly 

at least )  on the V
T _ j , specif ical ly : 

{ �k , T for k=l ,  . . •  ., j 

. 
VT - k+j + Yk , T for k = j + l ,  • . •  , L 

To fix the ideas , note that for the one - step ARlMA (p , O , q) predictor 

o f  equat ion AS we have (with T + 1 = t ) : 

and 

" " 
VT = ZT + I ' J=p , L=p+q 

Ck ::: �k } Yk , T  = ZT - k+ l 
for k = 1 ,  . . . , J 

Ck+J 
= a k } " 

Yk , T ::: Z - Z T - k+J 
for k ::: J+ 1 ,  . . .  , L 

so 

= { �T : k+ l Xk ' T 
� 

for k ::: 1 ,  • . .  , J 

for k ::: .1+ 1 ,  ZT - k+J - Z T � k+.1 
83  
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With this substitution equation A6 represents equation AS . I t  i s  

evident that equation A6  can represent much more general predict ions 

including even the case where some of the Yk are not l inear in , T 
the values of the t ime ser ies being predicted ( i . e . , not prev ious 

values of VT or l inear comb inations thereof) as in the general ARl MA 

case , but are instead perhaps values of  a completely separate t ime 

series , or  perhaps non - l inear in the predicted series . Equations A6 

and A7 w i l l  serve to represent as general a c lass  of predi ctors as 

we shall  have occas ion to use .  They are general enough to represent 

the general optimal ARIMA (p , d , q) one - s tep pred ictor . As noted , they 

can represent more general mul t ichannel s i tuations . A s impl e 

genera l i zat ion wouid make them representat ive o f  the general ARIMA 

(p , d , q) I. - s tep predictor , but the extra encumbrance in notat ion w i l l 

not be added as this feature i s  not to be used . We recal l  that B-J 

fit only one model for predictors of  a l l  lags ( L e . , I - s tep , 2 - step ,  

etc . )  and derive
· 
the predictors from the mode l . As we have demon ­

s trated , the one- step -predictor corresponds direct ly to the model .  

As a resul t , i n  the matter o f  the forms avai lab le  for predictor fit , 

the present formulation is  currently more general than that of B-J . 

Parenthet ically i t  may be noted that the ARIMA (p , d , q )  model .  

(which conta ins ARIMA (p ' d ' q ) , where p ' +d '  = p ,  as  a degenerate spec ia l  

cnse )  i s  produced by pass ing whi te no i s e  through a f i l ter w ith  p po les  

and q zeros . If  the white noi se i s  represented by E t then 

where FpZt _ 1 represents a l inear combintion of Z t - l  and i t s  past 

·values : 
8 4  
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then the one - s tep predictor i s  

A A 
Z t = FpZ t _ 1 + Fq ( Z t _ 1 - Z t - l ) 

wh i ch i s  a l inear f i l tcr with q poles , i . e . , t h e  predictor has as 

many poles as the mode l has zeros . 

Proceeding with the general program of opt imi zat ion o f  A6 wi th 

respect to Ck we note : 

A9) 

In vector notation : 

,.. 
Al l)  av '[ = 

ac 

Also note : 

A 
A1 2 )  V = T 

L - .1 ,.. 

!T + r C . +J j = l  J 
av . '[ - J  aC 

L L -J A 
t C . Y . + r C .  JV . 

j = l J T , )  j = l ) + T - J  

,.. 
which has al l terms depending on V col lected in the second sum . 

Th i s  is  o f  the form of  a recurs ive di screte t ime f i l ter with inputs 

Y k , T  a nd polcs  determined b y  Cj +J , j = l ,  L - J . 

.. . .  8 5  



Wc opt i m i z c t lw f i l t e r  h y  construc t i n g  a n  crror funct i on and 
m i n i m i z i n g i t  w i t h r C !-i poc t to c .  

Let 

where 

Now 

Setting 

Al4) 

where 

Al S )  

Al6)  

O < R < l  

aEt � c 0 ,  we obtain 
k 

t t � av � 
Bk = ( l - R) E R - T [ (V -v )� + VTXk , T ] 

te O T T O�k • • 

In vector notation A = {Ak , j } B = { Bk } 

and A1 4 becomc!-i 

A 1 7 )  A C e -t- Bt 

Lett ing 
� 

� � av 
AlB )  !I..r = v X + (VT -VT ) act 

t-r 

and lett ing 
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A19)  - 1  p = A . e AP = I 1. • . ,  

we have : 

A20)  

A21)  

Equat ion Al 7 shows clearly that C depends on t .  Therefore , we denote ,.. 
i t  by C t . However , Vt was to be computed us ing constant C for a l l  

t .  Thi s  requirement must  be abandoned in order to use the current 

value of £t to update p- l  and B .  Therefore , we set : 

A2 2 )  v.,. = CT X 
L -t - 1-t 

,.. 
s ince C 1 is  known when V must be  computed to update C .  Now 

� - t � 
fol lowing P . C .  Young (Ref .  3 ,  the goal here i s  rather different) 

(A2 0 )  l eads to : 

P X XTp _1 p . I -R -t - I-t�� - l  
(A2 3) !:... = - -n-

- L R � - l  K R+ ( l - R) XTp IX �-t - � 

or lett ing 

A24 ) 

� = E..r - l!r , we get , 

and (AI4 , A2 0 -A23)  yield 
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or h 
h av 

AZ6)  CT = CT - l + ( l - R) PT (VT - VT) ac
T 

av 
Thus , to update  CT - 1 to CT ' cal culate � by equat ion (Al l )  using 

CT - I for expl ic i t  appearances of C . Thus : 

A2 6a) 

h 
Then calculate VT from equat ion A 2 2 , PT from equation A23 , and 

final ly CT from equat ion A26 . (Note that VT may not be avai lable 

unti l  after t ime T , which merely means that CT cannot actually be 

calculated unti l  that t ime . This  presents no problem . ) 

Now recons ider equation A26 
h 

h av 
� = � - l  + ( l - R) � (VT - VT ) �  

Note that 

and replace 

be denoted by oC --T 

" 
h av 

= - 2 (VT -VT ) a c
T 

!.zR by A and !:r by � 1 , 

( the  reader may skip to the 
cont inuation of the more 
pract ical discuss ion at the 
bott om of page 92 if des ired) 

( temporary replacements for the sake of freedom in the ensu ing 

discuss ion) . Now we have : 

A2 7 )  oC = - An - I1-(V -v ) 2 
--T �T ac  T T 

.. -- 8 8  



�� wi l l  be assumed to be a pos itive definite matrix ( as ��l is )  and 

A wil l be assumed to be a sufficiently small pos i t ive quantity (as 

¥ i s ) . 

We shall  now show that i f  QT i s  slowly varying enough (which 

surely can be  provided if  ( l - R) / Z  is  actually smaller than A which 

is the case i f  ( l - R) / Z  is very small and A= ( l - R/ Z ) , and A is smal l  

enough ,  then equation A Z 7  ensures that CT converges as � +m . 

Mult iplying equation AZ7  by 

.:!ISCT n- l 
A -� ' �� 

We get : 

A28 )  - l ocT , n OC -r -T �T -T 

T a A 2 = oC , �(v -v ) -� O u  T T 

Let us assume that QT i s  essentially unchanged over a t ime period 

from T l to � 2 . Now sum � , between T 3 and T 4 and sum T between 

� l and T Z · 

We get : 

AZ,9) 

Now suppose that the sequence 

v . ... 
� '  . c 1 , 2 , 3 ,  • • •  , m  

i s  the infinite repet i t ion o f  a finite sequence of  length TM . 
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Thus ZT+TM 
= ZT . 

(The discont inuity that  this introduces at ZT +1  M • 

can b� el iminated as shown below or ignored i f  TM is  large enough 

'as i t  i s  in the case of  our data . )  Under these  c ircumstances o f  

recyc l ing data 

" " 
VT+nTM 

::: VT ( l +O(nATM) 

where n is  an integer . (The notat ion "O (U) " denotes an indefin ite 

quant ity of drder of magnitude U .  I f  t ::: O (U) and 6 > 0 ,  then 

I ,  I E l + 15 1m - 0 ) U ... O --u- - . 

In  the same vein we have : 

we have :-

A3l )  

::: ( C  - c ) T a � 2 (V _ V ) 2 -T 4 -T 3 � T-T T T - - 1 

I f  nATM i s  sma l l  enough the left hand s ide i s  obviously negative 

(Q is pos i t ive definite) . The right hand s ide is approximately 

the d i fference in 

, . 



• 

induced by changing CT (everywhere) by the change in CT going 

b�tween T 3  and T � . 

Thus 

where 6n indicates the change induced by changing fa by £T �  - CT 3 
and 

where T � - T 3  = T 2 - T l  and T 3 - T l = nTM · 

As a result : for A smal l  enough , 

decreases as T goes from T l  to T l +TM at leas t up to some point in 

t ime T 1 = t ( A )  • I f  a point is  reached were eT +mTM does not decrease 

as m goes from m to m+l ,  then one of  the approximat ions such as 
'" 

equat ion A30 has broken down . This can only happen if  ATMVT , 
,.. 

avT , 
ATM ac has become too large for some T ' < t ( A ) . Thus , ei ther 

,.. 
'" av T ' ,.. 0 lTMVT , >o or ATM� > 0 ( 0  > ()) . Suppose  VT > ATM 

then 

Thi s is unbounded a s  1+0 cont rad i c t i n g  t hc rcq u i r eme n t  t h a t  c
1 

always decrease up to T = t e A ) . There fore , a s s um e  
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A. ,.. 
Now equations All  and A1 2 show that VT and avT/ ac are outputs o f  

recurs ive filters which become unstable  together : 

where Fl , F2 , F3 , F4 represent l inear combinations o f  the given 

quanti tites with backwards shift i . e . , l inear fi l ters wihout poles 

(bounded) • 

., 

A. ,.. 
As a result avT/ ac can become unbounded only as VT becomes unbounded 

" 
or I / I - F2 becomes unstable . But in that case VT also becomes 

A. 
unbounded .  In  order for avT/ ac to become larger than r = 6 / ATM 
we mus t , therefore , have that VT becomes l arger than r '  and r '  

goes t o  infini ty a s  r does  - - leading again to the same contradiction .  
,.. 

Thus if  A26 i s  altered to CT = fT - l  + 2 A� (VT - VT ) avT/ a c  

where 2 A replaces l - R  then C converges providing A i s  small  -T 
and I - R  is  cons iderably smal ler .  

Pract ica l ly  the a l gori thm runs thus l y :  

In itialize  fa to reasonab le values . 

Initia l i ze £0 to K� where K i s  a large number . Update �T 
unti l  reasonably converged by equation A23  (a  quick process ) . Then 
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update C by AZ6 and P by AZ3  us ing the same R for both . The 
� -i 

va lue of  R is  allowed to change with i : 

a i = 1 - R = 

In the final values 

(which are Xi X� and 

t 
F = ( l - R ) IT R , t , i i i ' =i T 

log Ft , T  
... log aT 
... 

-

of  p� l and BT the contributions at t ime T 

n respect ively) enter with the factor Ft where -T , T 

t 
1: a ' 

i t = r T 

... log . al - al log 
aZ+t 

log Ft , T  
... (a +i ) (a +T ) 

Z 2 

or 

F t , T  

- 1  The factors with which the init ial values o f  �T and o f  !t enter 

into the f ina l va l ue is s im i l a r l y 

This i s , therefore , approximately the weight of fa in Ct . I f  there 

were no recycl ing and all  new data were being presented then for 

large T ,  6C r would have a rel at ive variance go ing roughly as 1fT  

from its  true value . Therefore , it  i s  reasonable to want F t , T 
to go a s  t+aZ and therefore to take al= 2 . I f  al = l  then all  contri -

but ions to £t are weighted equally in the final resul t . 



Thi s  might be better for recycled data when convergence is  

very nearly complete , but to  get quick convergence a1 should be 

cons iderably greater t han 2 ,  say al= 5 ,  is  used init ial ly (a 2-TM 

i s  a good choice)  and then eventually al � 2 i s  us ed . 

The criterion for convergence i s  that the smal l  changes in 

6Ct are not leading to a pers i stent change .  

Thus form : 

r �  = Rr� _ l + P- 16C  • • -T -t 

T A T av 
d = Rd I + 6C  P 6C = Rd� _ l + ( l - R) (V-V ) 6C ___ 

t 
t t - - -t - . T �T ac 

We may recogni ze 3 cases for the stat i s t ical properties of 6C  -t 

1 .  I f  C has converged essentially to i ts true value but new -T 

independent data i s  being fed in (no recycled data) then the 

6C ' s  wi l l  be independent and the l imiting expected value for -t 
DT/dT (when l - R  i s  very smal l )  i s  1/ 2 .  I t  wi l l  fluctuate a great 

deal and one should wait  for an espec ial ly small  value to stop the 

iterat i on .  

2 .  I f we nre using recyc l ed d a  ta then as £T converges ,  DTI ti T  wi l l  

approach zero ( for  TM large) . I t  will  fluctuate c on s ide r a b l y  

and a quite smal l  value i s  best used as the stopping place . 

3 .  I f  6Ct i s  l argely b iased , L e . , has a strong constant component 

( even though 6 CT is absolutely smal l )  as would occur i f  Ct were 

s lowly but s teadily dri ft ing towards a sub s tantial ly d ifferent 
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value , then (when I - R  is  very sma l l )  DT/dT w i l l  become actual ly 

much l arger than 1 .  
From these cons iderat ions we see that , as we are deal ing w i th 

recycled data , we should not s top the i teration unless D Id i s  T T 
sma l l . DT/dT < . 0 2 should be a minimum requirement when TM = 5 0 0 0  

as  i t  does in  th i s  s tudy . 

ll /TM should be required . 

In gene'ral it would seem that D Id < T T 

We mentioned earl ier that the discontinuity introduced by 

having Zl fo l low ZT was not of much s ignificance for us s ince 
M 

TM ::: 5000 . 

The sequence of  values i s  Z l ' Z 2 ' Z 3 ' . . .  , ZT - 1 '  ZT ' Z l ' 
M M 

Z 2 ' • . .  , Z 2TM , Z ) " The d i scont inuity which occurs between ZT and 
M 

Z l is  not only in ZT but in all  i t s  derivat ives . Al l these d i s ­

continuities  can b e  el iminated by us ing the infini te sequence : 

Let the value o f  th is  sequence be denoted by Sj ' i . e . : 

. . .  , etc . 

L e t  j III ( 2 J.+ K) 1'M+.J 

where L � 0 , 0 S J S TM , 

and K is  ei ther 0 or 1 .  I t  can be seen that for j > 0 there i s  

j ust  one way of  representing j by thi s  formula  with J ,  K , L obeying 
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t h e s e  r e � t r i c t i o n s . T h e  va l ue s o f  t he s equence a r e  d e t e rm i ned 

t h u s : 
S .  c 2 (L+K) "ZT - 2LZ l + ( - l ) KZ r J M 

where 

J c jMod (TM) 

K = [ ( j  -J) ITM] Mod ( 2 )  

" 2L = ( j -J) /TM - K 

I = ( - l ) KJ + KTM 

Expressed in informal 

j = 0 

DO 1 00 L = 1 ,co 

DO 100  K c "  1 , 2  

DO 1 0 0  J = 1 , TM 
j = j + 1  

Fortran : 

I = ( - l ) * *K*J+K*TM 

1 0 0  S ( j )  = 2* ( L+K) * Z (TM) - 2*L* Z ( I )  

+ ( - l ) * * K* Z ( I ) 

I f  t he trend from Z l to ZT i s  f i r s t  removed hy l e t t i n g 
M 

J- 1 
U (J) = Z (J) - Z ( l )  - �1 [ Z (TM) - Z ( l ) ] J = 1 , TM 

Then set t ing 

K S . = � - l ) U ( ! )  J 
yields an Sj without a trend . 
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Thi s  means of el iminating the discontinuity i s  in keeping 

wi th the ARlMA formulat ion which is indifferent to the direct ion 

of change . For a h ighly non - l inear predictor which fits an 

increas ing trend as wel l  as accounting for local dips (or peaks ) , 

the l ack of  distinction between "up"  and "down" could be a problem .  

However , with the right formulatfo
'
n this would not be a problem and 

the "double mirror" means of  recycl ing can be used in the traffic 

predict ion context when the sample l ength i s  so short that the 

di scontinuit ies  become a problem .  

9 7  
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Annotat i on o f  samp le run : l I i storical A IU MA ( 2 ,  I , 2 )  I - s t e p  
predictor for sen�or 1 .  

1 .. Q,  5 240  - "0"  m�ans use hi storical data ( " 1"  would mean non ­

historical) , " 5 240"  means read '5 2 4 0  records ( L e .  5 minute 

intervals )  from the date file  

2 .  � 00 , 1 00 - " 1 00" means ini t ia l i ze K to  1 0 0  I (Appendix A) 

3 .  MANDY - name of  data fi l e  = first hal f o f  Toronto data 

4 .  1 - use sensor I 

5 .  Y 2AVE - Read h i storical data from f i l e  conta ining averages 

over second hal f  o f  Toronto data 

6 .  5 2 39 - Use first 5 2 39 records ( from) MANDY as the traffic data 

7 .  2 - Print out first 2 records 

8 .  . Z!,�, . �,�,�,� - Initia l i ze Cl , O to  - . 79 ,  C2 , 0  = 

. 79 etc .  (Appendix A) 

0 ,  C3 0 = , 

9 .  9 1 - "9" i s  a control parameter - means standard run , " I " - ' -

means I - s tep predictor ("2"  for 2 - s tep or  " 3" for 3 - s tep etc . 

may be used) 

10 . l,! - means three points after data gap be fore predictor i s  

working normal ly , 4 points a fter data gap be fore errol' 

stati st ics are updated .  

1 1 - 1 2 . Two sets of e , A  for running two fixed second generation 

predictors s ide by s ide with ARIMA (2 , 1 , Z )  be ing optimi zed 

by thi s  program .  

9 9  



These  ARIMA. (1 , 1  t 1 )  are for comparison 

1 3 . 2 0 0 0 , 9  - This  part of  the run will  iterate through 2 00 0  po ints . 
- -

1 4  .. 

( I f  5 2 39 were less  than 2 00 0  then when 5 2 39 was reached the 

program would go back to the beginning of  the traffic data . )  

The program will  not work with the first � points on the data 

fi le . 
a 

�,!. - al I: 2 in a T  1:1 --L (Appendix A . )  " 1" has no important a2 + T 
meaning here (value !. for all  normal use) 

1 5 . 4 0 , 2 0 0 0  - a2 = 2 0 0 0 ; 40  determines a wild point se lector . I f  

square of the difference in two success ive values of ZT exceeds 

the mean square value by a factor of 4 0 ,  the po int is con­

s idered a wild point and treated the same as a data gap . 

1 6 .. �,� - p 1:1 !. q 1:1 2 

This program has d- l bui lt  in (a minor modi ficat ion of the 

program is used when d=O is desired) . Thus , an ARIMA ( 2 , 1 , 2 ) 

predictor i s  to be opt imi zed . 

1 7 . Q,Q - A I: .Q.x ( 1 - R) therefore  £T i s  not he ing upd a t ed on t h i s  

part o f  the run . When " 1 , 1" i s  entered , fT and ET are being 

updated together . 

1 8 - 1 9 - 2 0 .  Show mean square predict ion errors (exponential moving 

averages ) for the two ARlMA ( l , l , l ) predictors and the ARIMA ( 2 , 

1 , 2 ) predictor be ing optimi zed . 7 9 . 6 6 5 5 5  is th� value of  the 

latter .  1 2 4 . 6 5 4 7  i s  the mean square error of the "predictor" 

which predicts that the next value wi l l  be the same as the 

current value . 

1 0 0 



-. 

2 1 . Th i s  l ine g ives C I , C Z t Ci t C4 at t ime t = 8 , O O O  (at  the end o f  

this  part of the run) . ( the equivalent o f  aO , al , bo ,bl of 

Equation 5 .  
" " 

ZT +l = Cl ZT +CZ ZT _ l+C 3ZT +C4 ZT _ l  

.2 Z �  Thi s  i s  the value o f  dT a t  T = 8 0 0 0  (Appendix A) 

ZdT ( also estimates  the optimi zation bias for s tat ist ical 

.Z 3 . 

2 4 . 

� 
s ignificance) . 

This  is the value o f  D T at T = 8 0 0 0  ( Append i x  A )  . 
These are the values of !:T at T CI 8000 . 

Note that in th i s  case the mean square error for the ARIMA ( l , 

1 , 1 ) was 7 9 . 9 5 ( i t  was previously opt imi zed) and for the 

ARlMA ( Z , l . Z ) it was 79 . 66 .  The improvement in this case was 

much les s than 1 %  go ing from ARlMA ( l , l , l ) to ARlMA ( 2 , 1 , 2 ) 

As noted in Section 3 . 0  this improvement could be as high 

as 3% at some sensors , yielding a 1 . 5 % improvement in the RMS 

error . 

1 01 
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l I NK :  LDAD I NG 

ANNOTATED COMPUTER 1WN 01 PROGRAM 
FOR OPTIMIZING PREDICTOR 

. NOTE : Underline indicates Lnput , . 
[lNKXCT filB EX..,E.CUT I DNl 
0 , 53'3'24 0 CO - - -

O
· 

1 

5248 
.5239 

2 
3 
4 

0 . 288 0 0 0 0E+03 
o .  75S7 1 4�:E+ 02 

- . 79 
---:.. o • . 79 0 0 0 0 0 
. ' . '-

0 . 0 (1 0 (1 0 0 0  
• 79 

� 0 . 0 0 0 0 0 0 0  

0 .. 0 0 0 0 0 0 0  

0 . 0 0 (1 (1 (1 0 0  

524 (1 . , ; 

1 0  
7 

0 . 4 0 1 4286E+ 02 
O .  59� O O.(rOE+ 03 

@ 

• 

, ., . � ,� .. 
::."" 

oJ' '. •• . . 

4 0  
4 0  

O . 4 1 42857E+ OZ 
' 0 .  5654 1 E.7E + 02 

• 

" 

1 0 2  

I • • 

.' 

. . 

.. 
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, . 
ANNOTATED COMPUTER RUN OF PROGRAM 

FOR OPTIMIZING PREDICTOR 

6)® 
3 

.:.Z2.' • 79 ® 
0 . 79 010 0  

. 7'3 , . 74 
- �9 0�" 1 (1 I) 
2 (1 0 (1 ,  � - - , tril:\':; 1 (I (I 
2 ,  1 \l:rI� 

4072 0 0�\l3J 
2 . 2 - - 2 .  .1 1 1 0 0 1'1 1) 

4 0 . 0 (1 0 0 0 (1 0  
0 , 0 � 

- - O�' O O O O O  
· 2  

- 1 . 0 0 0 0 0 0 0  

4 

0 . 79 0 0 0 0 0  
.' 

O .  7 .. (II) ')(11) 

1 .  (1 1.1 0 0 (1 0 (1 
2 ( 1) 0 .  ( 1) 0 0 1.1 1) 0  

0 . 0 0 0 0 0 0 0  
• . 2 ·  

0 . 0 0 0 0 0 (1 0 .  • 0 . 0 (1 1) (1 0 0 0  
O . 1 1 3 1 6 1 9f+ 03 0 . 4�9572 0E+ 02 
O . 5 02426 1 E + 02 �O . 8733333E + O l  
0 . 499572 0E+ 02 O . 4 9 1 6 1 34E+ 02 • 

- O . 79 0 0 0 0 n  O . o o o o o o n  

- O . 4�5 1 1 33E+ O O  - O . 1 2857 1 4E + O l  
O .  (I (,r., o el l) uE + (1 0 o .  il (l fl O i 1f" 1f + ,) .. , 

5 0  4 7  . o. (1 1 9 073 0 O .  0 1  (I-=,�E:::: 
. ' 1) . 0 1  059E:E: 0 . 4'54 9':.29 

- 0. 0 058 06 0  0 . 565 1 13 1  
- 0 . 0 1 1 3552 ' .  - 0 . 4553450 

.. . -. _ _  ... __ ... . 

0 . 79 0 0 (1 0 0  

5 3  
- 0 . 0 058 06 0 

0 . 75 1 76 ('4 
-0.  564'724E: 

1 0 3 

0 . 0 0 0 0 0 0 0  

(I 
- 0 .  0 1 1 :::552 
- o. 45S�:4e. (I 

- 0 . 5647248 
0 . 4868848 

• 
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ANNOTATED COMPUTER RUN OF PROGRAM 
. POR OPTIMIZING PREDICTOR 

.2.'1-
� • .!l '-. ..: . 
.d:!. � 

0 . 79 0 0 0 0 0  • 

• 79 , . 75 '  
- 0.7 9 0 ( 1) (1 (1 

5 (1 1) (1 

5 ,1-
4 (. , 5 (1 (1 (1 

£. 2  

4 

o .  (4 1) 0 (1 1) 1)  

O .  75 0 (I I) (I (I 
9 

5. (1 1"11) 1I 1"1 (I (I 1 • (i ii (I I) (I (HI 

l d  - -

4 1 1 .  (I I I  (1 1."1 1) I .  (I 5 0(1 0 • . (1 1) (I I I  fl l) 1 1 

1 . 0 0 (1 1) (1 00 1 . 0 0 ( 1) 0 (1 0  
c: 2' 

-4 . tJ(I I) (�O O (1 2 0 0 0 . 0 00.0 0 0 (1 
1 . 1) 1) (1 (1 1) (1 1)  

0 . 1 2C:29 (12E.+ 03 
< 

O . 7t:1 95 1 4E+ 02 
o .  77 1 �E:89E + 02 O .  1 98E: (I (I (IE' + 02 
O. 7f8537J E + 02 Q. 77 02E:72E+ 02 

- 0 . 7€.36Z9€, - 0 . 5376476 
O. ::SE: (l62€.f + 0 1  - O .  1 :::c'4 1) 1.1 OE + 0& 
I) . ';"�:7f..974 � + 1 1 1.1 (I . 1 f. 1 :.::t.�, l F.: + (I (I 

1 1 .  , 1 04 
(1 . 1) 1 3 1 19(':;: 1.1 . (I (I ::G'.':,2 1  
O .  'I) O::25c' l  (1 . 1 78 1 594 ' 

- (I .  (109 1 74 (1 0 . 23 3 1 2 0 1  
, 

- (I .  (10::: 051:,€: -O. 1 �3 U 54 • 

• 0. 1 4 079 1 4  

1 66 
- (I. I)(J� J 74 (I 

0. 233 1 2 0 1  
0 . 34 ':: 1 1 1 3 

- (1 . 254 1 893 

/ 
1 0 4  

o· 

O. 59322E.8 " 

(I 
- 0. (1 I):I I)�.�iE: 

- 0 . 1 93 1 1 54 
- (1. 254 1 8513 

0. 234 02 1 E: 



ANNOTATED COMPUTER twN OF PaoGllAM 
POR OPTIMIZING PREDICTOR 

,4 5 

. 79 , . 74 
- cr:-79 0 0 0 0 (l 
. 79, . 76 

- �9 0 (I O (: O  
;-',(1 (I I), 9 

7 ( 1) (1  

1 . 0 (l O (i (t O I)  
7 (1 (J �. ( 1) (1 0 "" ) 1) 

__ 1 , 1 
- � , l . 0 0 0 (l Ij O (l  1 .  (1 1) (1 1) (1 1) (1  

2 2 
-2, 0 0 0 0 0 0 0  6 0 0 0 . 0 0 6 0 0 0 0  

1 . 0 0 0 0 0 0 0  . 
0 . l e22555E+ 03 (I .  7764 1 85E + 02 
0 . 77i2232E + 02' O . S 1 25 0 0 0E� O j  
0 . 77285�4 E+ 02 O . 7728S35E+ 02 

- 0 . 75 02273 . - 0 . 559788 0 
o .  H,5 ?!:,4'::E � (' 1  ' - 0 .  S (l fl l.l fl(l (lE+ O l  • 
0 . 2-; 1 4 1 4 5e + (I I) O. 1 �.�: I);-f:f,E'-(l l  

I 1 5�, 1 3� 
' 0 . 0 1 29 1 88 O. 0 02�25 1 

0'. 0029c'�' l 0 . 24i525:;: 
- O . OO� 1 78 3  O . 3 1 6 1 74� 

. , 
• • 

• .0 , 

0 . 1 0471 44 

" 

', ' 

'0 - ... . . . . ; '1 • • . .  

.. 

" .. 

. .  
. . . .  � "  

• • .  • , ' .1 

, , 0 . 6 092877' 
, " . .  " 

· � ' 2 07 ' ri  
- 0 . 0 0,9 1 783 , ' , - 0 . 0 028387 

0 . 3 1 6 1 746 - 0 . 267534 1  
0 . 4485773 - 0 . 35 08445 

.;, ! • • 

- , , . 
• � I ' 

. ' 

" . 

' .  ' 

- 0 .  350�445 . _ , :- ' _ :- _ 0. 3 1 88768 • __ ......a.--- � • .  

• 

'. 

• 

'& 
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ANNOTATED COMPllTER RUN OF PROGRAM 
FOR OPTIMIZING PREDICTOR 

4 
. 79 - . 76 .  

o .  �9 0 0 (1 1J (1 
. 79 , . 77 . 

•. 0 . 79 0 (' 0 0 0  
8 0 0 0 , 9 

, , 1 ., 
4 0 , 8 0 0 (1 

8 0 0 fl 

' . 
5 

0 . 779 0 0 0 0  

2 .  (I (1 1 1 1 1 1'1 1 1 '" 
4 I) . fI 1,1 ' I 1.1 '.' I '  (I 

. I .  IJ rll,I \'l I l I.l 1 I  

� :  (HI l i .  1·I I .l fl l�I I ' I.l I:e 

1 f t 
1 . (1 0 0 0 0 1) (1 1 . 0 0 0 ( 1) 0 0  

2 
- 1 . (iO O (l p o ,) 

2 
" 7 0 0 0 . 0 0 0 N I (' 0  ". '. 

1 . 0 1) (1 0 1) 0 0  <310 .  1 246547E + (I';: 
O . 7997 1 97E+ (12 

� 0 . 7966555£+ 02 
. - 0 .  74349;:�i. .�-O. I �.7��81)�+ �. � � O .  Z :.:3 1  • J5f + 1 1 1.1 

, 1 9E. 
0 . 0. 1 255 .:: 1  
u .  (1 (127 1 ';7 

· - 0 . 1) 08958 (1 
- 0 . 0 023742 

. 
0 . 7995 1 (l4E+ Oc'(f§) 
0 . 1 2 0 0 0 0 0E+ 02 . 
0 .. 79':'6625E+ (l2 

- (I .  53 05�44 . • O .  1 1 2487 0 
- I) .  27E;5;-J 4£+ "1' I� 

o .  4 :::;�" ?-�I':-E'- (IG'� 
1 7 1 

. o. OO�(t€'7 
0 . 254 (1:;; 77 

o. 33359��: 
- 0 . 28 0 1  0�7 

293 
- 0 .  0 0:::95';: (1 

Ct . 33359i='t: 
1) . 4735 075 

- 0 . 37 02793, . 

I 
, 1 0 6  

• 
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- PREDICTOR QPTIMIZING PROGRAM 
, " 

• TVPE t�LE: 

4 

5 

76 

347 

99 

1 0 0 

CCMMOtVCNt�/ETA ( 1 2 ,  I e:) , ZSS' <-5) \I IICS , DC � 1  (I) 
CCt1MOfi .... CtlD/ I TME (S25S) \I I SEtHSC:SS,> , KN, H I Z  ( 3 (1 (1) , I lIlI ,  I liUlI , 1 Tt; �  J�-: 
CCt1f'10rvCMJI'RAS. \I I JF , I e ,  I II 
CCMMON/CMA/A ( 1 0 , 1 0) , C � 1 0) , CA ( l O) , � , R3 , Rc: 
CCMMCfi/CMr.>X ( 1  0) , ZHA , ZHE: " , tiP, NG! ,  NT 
CCMMCN/CMC/SA , Sr. , SC , Z l , Z2 , Z3, I X , A l , A2 , A3, A4 , AS , A6 
EAY = O  • ' . 

ZHA= O .  
sc= o .  
ACCEPT 4 , I T , I X  

TYF'E 4 ,  1 T ,  1 X 
JX= I T  
KN= I X  
Zm O 
Z I = O .  
ZAE= O .  
22= 0 • .  

ACCEPT S , A l , A2 
A5=A2 
FORt1AT (2 1 ) 
FOF�tIAT (C:F�' 
t�T = fo 
AQA= 1 (1 (1 .  
AG,P= (I.  
EAB= O .  
EAA= O .  
RAS-= l 
CONT I NUE 
S:£;= O .  
IIC 347 I F'P= l , 3 0 0  
H I Z  ( I PF') = (1 .  
CALL TCF� I N  
NT=7 
DC 1 0 0 1 = 111 tiT 
ACCEPT 3 1 :: , CA ( I  :. 
T\,'PE 3 1 � ,  CA ": 1 >  
X ( 1 )  = (1 .  
C ( 1 )  =CA ( J )  
DC 99 J= l , NT 
E TA ( I , J) = 1) . 
A ( I , J) a (l .  
CC.iT I .iUE 
A ( l , l )  =fl l 
CCNT UillE 
DC 66 I TS='1 , 2 (1 
ACCEPT 4 , I ST , I SU 
I F ( I ST . EQ . O) GO TC 478 

� " 
. . .  

, .  

. ,  . 
� 

" 

1 0 7  

. . ... 

• .... 

, 

• 

l 
I , i 

. , 

I 

� • 

.. 
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, I 

-

- " 

478 

468 

\ 

. . 
" 

, . ,  
PREDICTOR OPtIMIZING 'PROGRAM 

FORMAT ( 1  F) 

ACCEPT 4 ,  I IIQ , I E  

TVPE 4 ,  I IIQ , I E  

ACCEPT 5, A l , A2 

TVPE 5 ,  A h Ac: 

ACCEPT 5 , A3, A4 

,TVPE 5 ,  A::: ,  A4 

I CZ= O 

ACCEPT4 , I T !!  I �IF 

TVPE 4 ,  1 T ,  I..JF ' 
ACCEPT 5 , R , R2 
ACCEPT 5, F:3 ,  F:6 
ACCEPT 4 ,  liF' , NO 

TYPE 5, F.: , F�2 

A€·=R€. 

TYPE 5, R3 , RE. 

ACCEPT 5 ,  HIlA , HIlI: 

A5=HIIE: 

TYPE 5 ,  HIlA !! HDE: 

TYPE 4 ,  r'�F' ,  liG! 

NT=tiF'+NG! 

. ....... , .. .  ....-......-. 

I F ( I ST . E Q . 6) NT=NT+ 1 
NPQ=4 

tiPQ= I II!;! 
F:2S=F.:2 

Rbl=F�3 

R3=�:2 

RQC!=F.: 

RQ6=F�6 

RCE.= 1 • 
-RE. 

RCE= l . -F: 
I CE = :)  

I CR= (I 

1 CS= (I 
l CT= O 

I CU= O 

ZAF= O .  

A4f1= 1 • -Ft4 ' 
.ITT= O 

TYPE 5 ,  F:C:E , RTT 
I F ( I ST . NE . O) GO TO 468 

ACCEPT 4 , I T , I SV 

TYPE 4 ,  I T ,  ,.ITT 
TYPE 6, RCE , F:C)< 
COfiT I NLtE 

ItO 55 I TT= b I T  

JTT·�fTT+ l 

I F ( I TT . E Q . 8 � 0 �  TYPE S , R2 

RTT= • .ITT 
R2=HIIA 

. RCE=RQQ/ (RTT+RQ6) 
. 
. - . .  .. .  

1 0 8  

" 

• -. 

.' 
.. 

t 
• 

.. . . 

1 
t . 



& 

, . 
c 

75E: 

656 

, 

, . 

. . . .  . 
• '. PREDICTOR BPTIMIZING 'PROGRAM 

RCE=RCE+ ( 1 . ';R2S+�:C·E) · 
R= l . -RCE 
R6=R 
RC6=RCE 
ZAF=ZAF+A3+ ( I . -A3) +Z2 
I F ( I CLI . LE . 2+ I SLI) ZAF=Z2 

·ZALcA4+ZAF+A4M+Z l  
ZAE=ZAE+A l + ( 1 . -A l ) +Z2 

\ 

I F  ( I t;ll . LE . 2+ 1 SLI) ' ZAE=Z2 
ZAK=ZAE+A2+ ( 1 . -A2) +Z1 
I F « Z-Z l ) +.2 . LT . AQ�.RW) 60T0758 
I C4= I C2+ 1 
I ClI= !) 
COtiT I fiLiE 
I F  < l CU .  6T . I E) 
I F  ( I CLI .  6T. I E) 
I F ( I CU . 6T . I E) 
I F ( I ClI . GT . 5) 
DII2=IIII l-

AOS=AQS+P6+RC6. (Z-ZAL ) .+a 
AQA=AQA+R6+RC6· (Z-Z I ) •• a 
AOP=R6.AQP+�C6· (Z-ZAK) +·2 

EA�=EAB.R6+�C6. (Z-Z I -ZHA) •• 2 

IIIl l =  (Z-Z l -ZHF(' 
I F ( I CU . 6T . I E) EAW=EAW+A3+ ( I . -A3) �ABS (DD 1 ) 
I F ( I CO . 6T . I E) EAY=EAY+A2+ ( l . -A3) + D D l 
I F ( I CU . 6T . I E ) EAA=EAA. P6+PC6. (Z-Z I -ZHA) + . 2  
Z3=Z2 
22=2 1 
2 1 =Z 
DO 656 J�J= I , I SU 
Zfi=2SS: (�IE:,-') 
2SS (Jf:"",I) = Z l  
Z l =Zri 
c:orn l fiuE 
2 1 =ZSS ( I SU) 
I C2= I C I  
I C 1 = I C 
CALL 2GEti 
I CE= I CE+ I C  
I C�= I CR+ I C+ ( 1 - I C 1 )  
I CS= I CS'+ 1 C 
I CS= I CS+ I C  
I CT= I CT+I CS: 
l CC.= 1 - 1 C  
I CU= l ClI+ I CC 
1 Clh:: I Cli. 1 CC 
J F ( I CU . LE . l )  GO TO 55 
XQIZZ I -Z2 
X <riG'!) IIIZHA 
I F C I CU . LE . NPQ) X (NQ) = O .  
DO 4 7  I = h NT 
XP=X ( J )  
X ( I )  =XQ 
XQ=�P 

. - . .  -
1 09 

r • 

l 
• -

-
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47' 

7 
Eo 
55 

544 

87 
66 

1 1  

I E:  

1 3  

1 4  

1 5  

. . , " 

PREDICTOR OP,TIMIZING'PioGRAM 

CONT I NUE 
I F  (I ST. E(;I .  E.) X (NT> = (2 1 -Z2-ZHA) .AE:S. (EAY) /EAltI 
I F ( I CU. LT. NPQ) GO TO 55 
2=2-2 1 
CALL PREII 
2=2+2 1 • 

FORMAT (. 1 X , 4F) 
FD�:MAT (3)< , 2E ) 

COliT I NUE 
• 

TYPE 6 ,  AQA , AC!P 
TYPE 6 , AQS , X (2) 
TYPE 6., EAFh. EAE: 
TYPE 7 ,  C ( 1 )  , C  (2) , c. (3) , (: (4) 
DCC= (I 
DO 544 • .11*= 1 , tiT 
DO 544 JB .. t=1 f t'lT 
DCC=DCC+DC (J�J) .A (JBJ , JBK) .DC (JBK) 
TVPE 6 , ZHA , Z  
TVPE6, IICS: , liCe. 
TVPE 87 , I CE , I CR , I CT , I CZ 
TYPE 7 ,  « (A ( I .... I;o , I = h Nl) , J= b tiT» 
FORtiAT ,2�< , 4 I ) 
COri,T I NliE 
STOP 
E NII 
SUE:F:OllT I JiE TOF' Hi 
COMMON/CMJ/RAS , I JF , I C , I D  

-, . ,; 

COMMON /CMD/ I TME (S2SS) , I SEN (S25S) , KN , H I Z (3 0 0) , I UU , I UUU , I TA , JX 
I NTEGER A, E: , (" II 
ACCEPT 1 ,  tiAMllY 
FORt1AT (AS) 
CALL I F I LE ( l , MANDY) 

ACCEPT S , I D  
TVPE €I ,  I II 
I UU = l  
ACCEPT 1 , M I Nlt'y' 
I UULI= (I 
GO TO � 1 1 , 1 2 , 1 3 , l 4 ) I D  . 
READ ( l ) K , ( J TME (�) , I SEN (J) , A , B ' C , D , J= l , KN) 
GO TO 1 5  

REAli ( 1 ) 1(, ( J  TME ,J) , A ,  I S:EI'f (J) , E: , (: , [I , .. 1= 1 ,  KI1 .1 
GO TO 1 5  
READ ( 1 ) K , ( I TME (.J> , A , B , l �EN (J� , C , D , J= l , KN )  
G O  T O  is 
READ ( l ) K , ( J TME (J) , A , B , C , I SEh � J ) , D , J= l , KN) 
CONTi NUE. 
REW I NII l '  
TYPE 8 ,  .�, . 
ACCEPT S , I TA r JVPE 8 ,  I TA 
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PREDIcToR OPTIMIZING PROGRAM 

RCCEPT 8, I U  
TVPE 8, I U  
D O  4 5  I KK= b I II 

I K= I KK+ I JF 
TVPE 9 ,  I TME ( I K) , I S£fi < I J() , I1  
COtiT I NLlE 

CALL I F I LE C 1 . M I NDY) 

GO TO (2 1 , 22, 23, 24 , 25) I D+JX 
REAli <. 1 )  K ,  (E, H t z..(J) , F, GH , G� H "�I= l , 2€:€:) 

GO TO 25 
' 

READ ( l ) K , (E , F , H I Z (J) , GH , G . H , J= 1 , 288) 
60 TO 25 

. 

READ ( 1 ) K, (E, F , GH, H I Z (J) , G , H , J= 1 , 288) 
GO TO 25 

READ ( l ) K , <.E, F , GH, G , H I Z (J) , H , J= 1 , 288) 
CONT I NUE 
FORMAT ( 1 I ) 
REI.t.I I NII 1 
TYPE 1 0  , E , F � G , GH , H , H I Z ( 1 0 0) 
FDRNFtT (3E) 
FORf1FtT (3 1 )  
RETlI�:N 
END 
SUB�LlT I NE ZGEN 
COMMOH/CMJ/RAS , I JF ,  I C , I D  
COMMON /CME/ X ( 1 0) , ZHA , :HE , Z , NP , NT 
COMMON /CMD/ I T ME (5��5 1 . I S EN ��255) , KN , H I Z (3 0 0) , I UU , l UUU, I TA , J�� 
I e= 1  
I ULllI= I LlUU+ 1 
I lIU= I UU+ l 
I F ( I UU . GT . I TA) I UU= l 
I VA= I TME ( I UU+ I JF ) 
I F C I YA . NE . I UUU) GO T O  98 
Z= I SEN ( I JF+ I IJU) 
Z=Z-HI Z  <I VA) 
I C= O  

I UUU= I VFt 
RETURH 
END 
SU:E:F.:OllT I f"�. F'F.�EII 
COMMON/CMC' SA , SB , S C , Z l , Z2 , Z3, I X , A l , A2 , A3 , A4 , A5 , A� 

COMMON/CNN/ETA ( 1 2 , 1 2) , 2SS (5) , DCS , DC ( l O) 
CCMMCN/CMB/X ( 1 0) , ZHA , ZHB , Z , NP , H� , NT 
CDMMON/CMA/A ( 1 0 , 1 0) , C ( 1 0) , CA ( 1 0) , R , R3 , R2 
D IMEfiS: I O'., V < 1  (I) 
£SQ= o. 
DO 6 1  I I - I t NT 
ETT=X <I I )  
DO 62 JJ= l , 'iP 
ETT=ETT+R2.C (NQ+JJ) .ETA C I I , JJ) 
��P=ETFt ( J  I , J .. I )  

\ 
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PREDICTOR- OPTIMIZING PROORAM ' 

,. 

. , ' . 

ETA ( 1  I ,  JJ) I:ESG! 
ESQ=ESF' 

.COfiT I filiE 
ETA ( l  1 , 1 )  =ETT 
COfiT I MliE 
RCE= 1". -R , 
RCEE=RCE+A5 

A fit = fiT 
D= CI .  
ZHr�= (I .  

RA= 1 . -RCEE+R2 

DO 3 0 ' I = b NT 
ZHfi=ZHfi+C ( I )  + X ( I ) 
V ( I ) = O .  
D O  2 (1 J = l , fit 
V ( I ) =Y ( I ) +A ( I , J) +X (J) 
D=II+Y ( I )  +:;�: (, 1 )  
Rf1= 1 . /�� 
RC=RM+ ( I . -R) / (P+D+ ( I . -R» 
ZHA=ZHH 
DES= O 
ZHE:= O .  
liD 5 0  I = b  fiT 
DET= (J 
ZHB=ZHB+CA ( I ) +X ( I )  
DO 4 1)  • .1= 1 , tiT 
A C I , J) =RM+ A ( I , J) -RC+Y ( I ) +Y (J) 
DET=DET+ETA ( J , l ) + (Z-ZH�) +A ( I , J) +RCEE 
I F ( J . GE. I )  60 TO 4 0  

ASA=A ( I , J) +A (J , I )  
ASA= . 5+AS:A 
A ( I  , .. I) =AS'A 
Ft ( ... ., I )  =ASA 
COtiT I r'fUE 
DElI=ETA ' l , l ) + (:-ZHN) + RCEE 
DC ( I ) =DC C I ) +RA+DELI 
DE S:=IIES+IIEl.+{'ET 
C ( I )  =C: ( I )  +IIET 
COfiT l f�UE 
DCS:z:RA+ IICS:+ IIE S' 
FD�'MFtT ( I X ,  5E) 
RETU�" � 
ENII 
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TABLE C- I 
Historical I - Step 

S ALf'Hft I'ElF> !>GI':T (hI.,l£ �:C' ) ,;,'0[ H;S· .aT ... FiT (fltlE 4Thl f 1 : .  
1 • �:S0� • 7(�€t 8. ':' 1� 1 7(' -: . •  4,:,775(1 1 �- . �7 3·�3� ':;' 1 : 
1 . 7�CO . 7-' (1 ('. �1 1 4 1 '!: . :;�nt.l ';, ! : . • 41)7 1 '?-E ":-;- 1 �  
1 . 750� . �e(1 �'. �cE'( 1 (\ t • •  ;;':'51 7( 1 : • e;('2� 1 -:- 4 ;- 1 : 
1 . 7560 . 81 �  �:. ��;'38C'4 " 

• ;,��·$4':' 1 �;. ��;!.�€·4t!. � 7 1 ': 
1 • �(1(' . �4(' 6 . $5�1;:IC17 ': '.  4\.'454·� 1 � .• 5'?5::'':·4 4 7 1 ': 
1 . �e.e . �e£1 ';.. ('2': �E'; � .  ' B 1 27 1 1 ::; . 7'7'?20':' .. r;"' I :: 
1 . 79(113 . 70� :: .  So 1 1  E.4E; ".. . � ;::·Kn:' 1 :; .• 4EfE. 1 7  �7 1 �  
1 . 7913£1 . 74(- ':,. ;":'4 1-:-,? t .  ::,852E.2 1::::. 4E,b�·4;' 1 ':;7 1 �  
1 . 7?ea . t:60 �, . S'2("3�:,? .: . • ':t�:t'7Se 1.2;. e·7,?�1·;"7 .17 1 ::  
1 • '(";:.,,(1 • 8 1 e  ::: . •  �;;'';21Z'2 t. e �:E: 17::;:- 1 �I. t- �t32E�-? 47 1 ::, 
1 . i'ge€t . 840 :: • ;'4894So t;; .• �;871 2';' ! :;; . E,8495�' .:17 1 �  
1 . 790'21 . -;.eO So. 61E: 1 62 0:,. 4 1 1':,71 1 ::: . 88c, 1�4 47 1 t, 
1 . �720 . 7eO �:. 940geE: E·. 403469 1 3 . ':· 1 H:45 .. 7 1 ::: 1 . 872£t . 740 8. 93S22E: t· . 8�:7€.6� 1 �  • .;.e,�3(9 .17 1 0:  1 • -::720 . Se(1 E • ';'6412;::::;: .: .  2.c:�e4 1 l!:.  E:�;:::248 47 1 �  
1 s.- "'-' . ( e U  . 81 0  �" 50 i 1 41�1�� tE • •  :.:��:e37E: 13. 89224 1 471 �  
1 • f;7E:� . �4e E:. S�::7;'4 € . 384e5I£, 14. fl€l39E, 1 47 H· 1 . S72e . 0;.66 5-. (,77':-5 1 t,. 4(181�:7 1 4 . 2E,9E,':-0 471 �· 1 • �:5Ct0 . 7eo �'. S-�4:::64 .; . • 3�6S-:-:c 13.  5473E:(' 471::: 
1 . 85�0 . 740 i! . •  '?':1)649 t .  ':·8(tE�.:: 13. 61 4e.c.2 47 E 
1 . c;5(t(t • e:0u . S. �4 J 447 �. 87E:8S� 13. 7';.550;.5 47 1 :; 
l '  • E·5(tO . :::1(.- ::'. ';'48067 ,: .o;·-:r:-e.Cl 

_' . ... 11 .... "' .. ..  1 �� .  7ge·47� ,;!7 1 : 
J . 85('1(' . 84�1 o .  S-7�'�;6 ��,. �.7":,347 1 S .  E:Sct''';e. 7 ... 7 1 �, 
1 . 856(1 . S09 -:-. N76';"; -:'. 400507· 1 4 . 1 44 7 1 4  47 1 E  
1 . �80e • 7 flO E' . 94:::933 6. 4�696t: 1 3  • E·�:'; $2 3 47 1 ::, 
1 . :::800 . 746 2. $48465 �-. '::!i24!:9 1':'. '7 1 SoE40 471 E 
1 • :;:E:('(1 • S00 :::. �75c€5 €.. SS:�;�;€· ! 3.  S-;'55.:t::: 47 1�' 
1 . :·S(1IZ\ . 81 €'  �:. S-:::2�2S � .• �:,:5�51 1 ::: . -:0'::(17 E 1 �;"1 :: 
1 . SS-X' . 640 �. e· 1 1 3�::' t: • �,�;�tS61 14 • t"4';,20�, 47 1 ': 
1 . E:800 . �� $ . (:92325 t .• 4 1 46'::5 1 4 .  ;;; 1 ;'62::: 47 1 �  
1 . �E:ee • '('£16 '? (:1 7';,5 1 .;'. 4�,46E:8 1 3 .  '7':o4:�4 1) 47 1 ': 
1 • -:-20Cl . '7..:'2l ·� . (·2": � 1 4 "':,. 4441 �9 I::  .• ':'\)22� 1 �7 1 :: 
1 . 920'11 . �;0(' -;. • (!t:;'1 E: 1 0£ . 442757 1 4 . 1 1 ::21 ::, �7 1 �  
1 . $200 . �: 1 e, -:- .  (,7-:-51 1 t. 44:::7':.2 14 . 1 ':·(· ·�21 .1, 1 ::  
1 . 9200 . 84121 ,? 1 1607 1 E . 45C'Sez9 14. 2,?E-7e. l .: 7 1 :  
1 • �2En) • SIZtO 9. E.1390E: ';,. 48451 1 14. �.1 �·E.7::: � ;: l �  2 • 7':-�10 • ice 1 1  • c.c. 91 1 1Z� �" .:·93364 15 • .-17::�����·? .!� l ::  , . 7:.00 . 740 1 1 . 1 95423 E·. �·�3447 1 � . 4::.n 1 7  47 ! $  c. . ,;;u(t . �e 1 1 .  1 7E:22€ f' • 0:,3%::6 1!::. 42337:: 47 1 '; c: . 7500 . � u:. 1 l . l iS'264 0: .  IbS ';'0(15 1:'. 42": 74e � 7' 1 '; 
2 • 7�.oo . �4€< ! 1 . 1 e.9065 �:. t:.4214::: 1�. 44659';' � "' , ::  . - -
2 • ';'f.oo . -:000 1 1 . e:3B649 �·. r:.i4 1E2 15. ��:01 75 ..;7"1 : 
2 . 7900 . 700 1 1 .  1 6t-06S ( . •  ti ::.:e(.",: 1:·. 4351E·S -7 l :  

. (: • 7900 . 740 
. 

1 1 .  1 479S<'3 � . •  t ':: l�7 1 15. 3t$34� -= 7 1 �  
2 . 7900 . E:€t0 1 1 . 1e3�74 ; .• e-'?':75S 1�. 3t.sSe4� �;- E p . 7900 . ::'1 0  1 1 . 1 �649 � .  :'-:'0978 15. 371 c.'32 47 1::· 

: �  . 7�£t0 . C<40 U . l:.e12E 0;:. 5$ 1 ('8S 15. 337�4 .!71E: 
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TABLE C - I  
Historical I - Step (Cont . )  

--'---
.. . S72et -:700 1 1 . 1�S772 �·. t l '175 l e,. 4 1 1 �,D .:7' 1 -:  
2 • S,7c?0 . 740 1 1 . 0�9�e, 8. e:7C.�E:t:, 1 �I. �;t.�,4·�4 47 1 �  
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2 . 8800 . 740 1 1 . ft97.:128 ::'. 57 1 6 1 E  1 �.  371 5�:.; "7 1 � 
2 • 88(-10 . E00 ! 1 .  (lEE,237 �'. e·8E.532 15. �.5;.8f.5 �7 1 ,: 
� .:: • E'8OC' • E'I (1 : 1 . tl672�4 t' . :341 � 1�. 3561:-$ ";- 1 ·: 
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2 . S800 . 900 1 1 . 1 08323 8. 5571 4 1 1 5 . 4565£1::: 47 1 �= C- • S'200 . 7ee 1 1 . 1 6467(1 � .  6�€.839 15. 474::.17 4:''1:: 
G: . 9200 . 74(1 1 1 . 1f7672 E·. �.E:931S7 1 �,.  439�:51 47 1 �: 
2 . S200 . S(le 1 1 .  1 (15�;(17 �'. 56e€,34 1 5 .  437€145 -7 1 � 
2 • S<2C'(1 • ;:.1 (1 1 1 .  1 ('61 (14 , :::. 55�425 1 : . 4426:,5 47 1 :;· 
2 . -:-2(1(1 . :C·40 1 1 .  1 1 � 756 8. 5':' 1 j;8S: 1 5 . 46-;'7-:-4 4';"1': 
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TABLE C- l 
Hi storical i - Step (Cont . )  

:3 . E:800 :&40 10. 4�12S 7. 941 063 1�. 39S81�, "7'1 �. 
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4 . ;:'720 . 900 1 0 . 9 19343 8. E:7�S::2 16. 5485-:08 47 1�. 
4 . e�500 . ?e0 1 1 . � 1 0439 ';'. �.74�55 16. 5<;064('5 47 1 E: 
4 • E:S00 . 74(' l e. 9t·0 199 ::·. S31�:3E: 1 6 . 54524;;· 47 1 ::· 
4 • ESu0 . 800 10. 91 7107 8. 29262': 1 6 . 5(17:65 47 1': 4 • t:.'500 • e1 0 10. S'1�:721 �:. 28E'E'21 1 6 . 5Ct5984 471t 
4 .,S'S(10 . 840 10. 911Z'09 1 E:. 281�:22 16. 5€195M 47 1 �  4 . 8500 . 900 10. 93221 E'  b. 2-:00l l? IE . �,54E,�:'; .J7 1� 
4 . 8800 . 700 10. 99931 6  8. 258758 1 E,. �·906€-2 � ; 1 ;  
4 . �800 . 740 10. 948398 B. ;:;1�O 1 €.. 539S34 .:.7 1 t  
4 . �(� . g-ec' 10. 90431 :- 8. f777�'B 1 IS. 5026S:5 47 1€; .; . t$00 . S16 le. 9�1076e. 8. 274124 lb.  �·01 1 E·e 471E: 
4 . 5800 . 840 10. E;%6E 1 E'. �67S36 1..;. �·e4�14 471::' 
4 • E-'800 . 900 1 13. 917874 ':' . £7b430 It . 5:,(,302 - 471'; 
4 . %'00 . 700 1 1 . 015470 €. �:62870 l E,.  e15,?�3 .:; t1 � 4 . 9200 . 74(' 10. 'i'€-7607 E:. 8217'55 lE . •  56$753 .:.7l i 
4 . 9200 . 800 11:. 9�'E:51 1 ::-. 28747C: 16. 53-:085:· .;( 1i! 
4 . $200 . 81 0  10. 9256'38 e;. 284586 16. S3'9'595 47 1E: 
4 . �2ee . 840 10. 924428 l! . '=.81335 1 6. S471C:7 471t! 
4 . 9C'00 . 'S'C£1 . 10. 951321 �-. Co95M8 16. H1021 1 �7 1 E 
STOP 
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TABLE C - 2  
His torical 2 - Step 

S AlPHA I,ElM S�'T (FtIJ£ S(I) R,i£ f!BS ':TI-I H ( HI)[ 4TH '; H·E·. 1 • "?BOO . 7::0 St. 1ESo92C1 t-. �1 43E'4 14 . 21 E;957 4f:,c.€, 
• 

. 7eoo . 779 �. lesE<08 Eo. �.(I(1�.(,� 1 4 . ;2'1'4": ": 7  46a� .. 
1 • 7�:OO . &b0 ':!. 212Ste,6 e . • 4':1:'1 4':' 14 . 4S4 1 l ': .at-c..: 
1 . 7800 . EEe -:O. ��·394 t,. �·C'�27� 1 .f .  5��'C:(·7 4';·2(' 
1 . 780£0 • �\7I�. 9. �S2.49::: €'. :·1 1�(1::: 14 . t·e·47- � ":  .. ': .:.� 
1 . (H� . 93�' S. C E· l �02. t: • 5::'4':,,:: 1 4 .  755E.(�· .:�.:..:':" 
1 . �:100 _ . �0 ';'. 1 85787 t .• �·�5121  1 4 . ':''':'4r7: ,;�.':',:. 
1 • 81 C� . 77S ·;':'. l E:I E:71 t:-•• 4-;'076':· ) 4 .  3c.'t-4l t. "';.':'i: 
1 • 8100 . 860 ':I . 209ne, to. 4824':-6 � 4 • 5E.:;a;·:;·2 .;.';.':'(1 
1 • �,lCte • t.E:e ';'4. 22��7 1 rE • •  4 t.e,E:9::: 14 .  t·::.E·�4:;: 4.;.e{· 

. 1 . 81 £00 . S'05 9. 249749 t .• 4$17286 J 4 . 734;'.t4 .:1-:.�(� • 1 . S1ee . S'30 9. 279457 6. 51 0540 1 4 . 841 250 �.:.:.(, 
1 . E:400 . 75£1 9. 1 87945 e,. 5(10384 1 4 . � 1 6E:E.(1 <1':·20:' 
1 • ::Au€! ,. 77� '�. 184947 e .• 4�;t641 1 4 .  �85:':::'4 ..:6��· 
1 . • :::.40':1 . �6€J 9. 2 15';.83 ':·. 4777�1 1 4 . 6431 1 ':. .l6': � 
1 . E4ee . c�o 9. 2�·2093 E . •  4E:21 ('9 1 4 . '-;:' 1 1 H 4':.!(" 
1 • E:400 . %e . '5&. £57472 6. 4-:01 99 1 14. 8264':' 1 .. tSi(' 
1 . :::400 • -:.��e 9. 2E:8216 ':'. 505027 1 4  • -;'39E�"?4 4': CC· 
1 • c'e:0e . 7:(1 9. ':'06::: 1 4  E.. �cq4 1 8  1 4 . 8�4�::'5 4";.-:'�' • . ;:'800 • 77:- . 9. 2eE-21':' 6. 4�5207 1 4 . 4( 3 195 -�'':'�:'' 

. €'BOO . �Hl So. 2457€8 ';·. 4-:"2027 1 4 . 7t"27(' .:6c� 
1 . �:eOO . E.�:e '? c·64:'33 6. 49E433 1 4 .  EA::;:t4 7 4':.2t? 
1 • �-e(10 . $(15 9. ���07 6. 5Ct':ESE1 1 4 .  Soe.427 1 .ltc.Co 
1 . €:800 • S'3(1 9. 32E.7£€ t:-. 5�·01 ��: l �  . •  C'€:847':: 4,;,c.6 
1 . 9100 . 750 9. 242e57 €·. 5320E l 1 4 .  4t.e�,0�· -,.';.eC 
1 . 91 00 . 779 9 . 2463132 t£.. 522204 1 4 . �47E'�:'? 4':.2':-
1 . �10e . S6a 9. 298933 6. 522838 1 4 . 8€��r .;';·E(· 
1 . 9100 . ESO �. 321 091 6. �.29521 1 4 . 9564 E .l';·2C' 
1 . 91 00 . 905 -:0. :::53824 i. S4 1477 1 5  • (1E:\7t9':t"s 4t·�(· 
1 . 9100 . 930 9. 392097 E . 5581 18 15. 2 1 4c.� 1  4';.'L:· 
2 . 7800 . 756 1 1 . 41(1594 8. 8130546 le,. 8a76� 5 �.:,�.!. 2. . 7800 . 77� 1 1 . 38:::596 8. 778C:14 15. '('�:4tE:: -.; . .:.�: 
2 • 78eO . 86(1 l l . 356555 S. 75213� Ie •• 7E·1 4�)7 �-:.c:(, c: . 7800 • :.80 1 1 . 360888 8. 753817 1:'. 7�42e.:: ,:,.;·e(· 2. . 7800 . 9(15 1 1 . 372.432 8. 761 473 15.  8 17SOC'? .J.t! . .E(" 
£ . 7800 . 930 1 1 . 390765 E:. (73226 15. E:50C12€· 46c;':� 
2 . 81 00 . 756 1 1 . 379859 8. 772541 15. 77E'€.4E- ... t . .:.�:, 
2 . 810e . 77� 1 1 . ::'50849 8. 748824 15. 754324 t:!€'C�1 
2. • £:·1013 . 8';0 1 1 .  �:lS0e5 8. 71E;38S 15. 7"s69S<0 �tl�(': 
c: . t:1 0e . eS0 1 1 . ':'213874 E . 7 1 9C:50 1 5 .  75E;9�7 .;-: �.: 2. . 8100 . S'0S 1 1 . 33057� 8. 724813 1�·. (&1449 �t·�(· 2. . 8100 . 9313 1 1 . 347048 8. 735605 15. 812451 41£.2(-
2 • B400 . 750 • 1 1 .  35E-61 6  8. 7513542 15. 762(117 46e(' 
2 . B400 . 779 1 1 .  2.26c:E·4 €. 7252€-3 15. 737?[-t9 4oE21Z1 
2 . �400 . 860 1 1 .  28968e. 8. E.92975 1 5 .  7295S"3 0:.';'2(, 

. S400 . 880 1 1 . 2916213 Ei. 693003 1 5 . 741501 462(' 
- . B400 . '905 1 1 . 300150 8. €-97609 15.  764€J7€ 4�2C1 
2 . �ee . �30 1 1 . 315457 8. 7e663� 1 5 .  7�517(� 46�\? 

1 1 7 



• 

2 
2 2 2 2 
2 
2 
2 
2 
2 
2 2 ,.., .:-
�: 8 
::: 
::: 
:3 
::: 
3 '  
3 3 
3 
3 ,.. 
.. ,., .:-
� 

.3 � 
3 
::� 
3 3 
3 
3 
3 
3 
3 
3 
3 
3 4 4 4 
4 4 
4 4 
4 

.. 

. 8800-

. 880e 

. 8800 . 6eCIO . S800 

. ssee 
• �l EJ0 
. 910£1 
. �1 6e 
. 91 00  
. 91 00 
• �le.(l 
. 7S00 
• i'eae 
• i'SOO . iSOO . 7S00 
. 78£10 
. 81 £10 
. $1 e.0 
• 81€'0 
. 81 £1£1 
. 81 00  
. 8100 
. 8400 
. &400 
. �40(1 
. 8400 
. 8400 
. e400 
. 8800 
. 8800 
. ;::800 
. E·80e 
• E:800 
. 8800 
. 9100 
. 91 00  
• 91e..e 
. 91 00  
. 91 00  
. 9100 . 7S00 
• 7800 
. 7S00 
• ?See 
. 7800 . 7£·00 
• 8100 
• flee . Elle0 
. elOO 

. . -

. 150 

. 779 

. e�0 . ase 

. �e5 

. �3e 

. 750 

. 779 

. 860 . �:e 
• 905 
. 930 . 750 
• 77� 
• �:60 
. �0 
. 905 
. 93£1 
. 756 . 779 
. E:€,(1 
• E<8e 
• 90S 
. �::'0 
. 75(1 ,  
. 779 
. 860 
. �·80 
. 905 
. 930 
. 75(1 
. 77';:' 
• :;'6f' 
• ;:.80 
. 905 
. 930 
. 750 
. 779 
• et.£l . 880 
. 905 
. St30 
. 750 . � 
. S:6e 
• esc 
. S05 
. 9::'£1 . 
. 75£1 . 779 
. 860 . �e� 

TABLE C - 2  
Hi storical 2 - Step (Con t ,  ) - -

1 1 . 342850 8. 7326�7 1�" 7£o70'?2 .. e.2'� 
1 1 . 312351 � .  7£172(11 15. 744577 4':'':'(' 
1 1 . 2755(14 � . E.7€-54e 15. 743€,':o'Z' 4':,�.:· 1 1 . 277421,) 8� 677�.s4 15. 7575�:-:: .. ..: .:..: 
1 1 . 225S69 E . 68E:67::: 15. 7S2E·49 46�C': 
1 1 . 301321 8. 691 654 1 5 . 8 1 6422 4e.�C· 1.l . �54032 t.. nS687 1 5 . 801 1 1 4 462(' 
1 1 . 325393 8 . 7' 1 5628 15. 7E:c·'S'52 �€·':'0 
1 1 .  c:94267 E:. 6S4/'?1 15.  7954�:1 .:l €.c.e 
1 1 .  E'97'i-'1 2  E�. e.�:5845 1 5 . E 1 2:-1 2 4€·2L3 
1 1 . 3(1821 E· E'. t::.�(14E·� 15. N2€E.I) .:t£.�:: • 

1 1 . 3255E:8 �:. ('�O746 15.H:1 2c �· .. ..:·,:0 
10. ':57825 . 8. (184293 1 5 . 9b-e7EA 4€-2€o 
10. 624729 8. £155559 15.  94':'E·E·7 .:..: . .:� . 
10. 577626 3. (l 1(tl�5 15. 91 E.(-::.::: 4';.':'.:� 
10. 57E.350 8. (\04849 1�. 922':'4(1 46c.0 
16. 580536 S. 003225 1 5 . 938648 46£(, 
10. 591 138 E:. 607184 15. 96SlE.c. 4€·c.C 
1(1. 642588 8. 07396E: 15. 95399!:, .:l':.2€o 1£1.  E.(�8425 ;::. (144'535 15.':+1:-467 �6E:0 
10. 55821 ":1  7. sSe7a�s 15. E;86:!;'?4 4':·20 
10. 556 154 7. 993037 1�. 892:::17 4€-21'::' 16. 559344 7. 991�:1 l 15. ,?073�5 4052(1 
1 0. 568940 7. 99E42t: 15. 9308;:' 1 4':'�0 
10. €·3671 5  8. 07(1605 1 �·. 93�;57-:- 46�� 
10. H,2329 8. 04091 7 1 5. �0472i' 4';''::(1 
1('. 551528 7. 9940�2 1 5 . E:734�:3 4€2e-
1�. 549324 7. '?901 7e 15. 87982(1 46Ee 
10: 552244 7� 9ge7S2 15. e:s-53;::2 4';''::€' 
112'. 561 777 7. 995784 1�:.91931" 4':.':'? 
1(1.  ':;.52887 t:. 082302 15.  94645t; ';';2(' 
1('.  € 2e31 7 8. �15373:' 15. 91668� 4';�� 
H�. :'75001 1::. 0 121 69 15. 8977�8 �620 
10. 574238 E:. e09820 15. 9073':'7 ';';2(1 
10. 5791 0 1 �. "1 1 ::'90 15. �27(151) "I:.i:,(' 
10. 5913422 8. £11 7504 1 � .  955!�·1 �€.�(1 
1a. 6St9390 1::. 1 1 7.?4-? l�· .  -;'S29'='1 4';'20 
10. ':.71 1 35 8. (19259� 15. :-7£1575 4';.':'�1 
1(1. b38668 t·. (':'e214 1 5. 97421 7 ... t,�(� 
1e... 641239 8. 6S7S'E-� 1 ':;. S8977€' .:-:.�(-
10. 650349 �;. e6 1n5 It· . e 1 7 1 �2 �.; c� 
1 (1. E.65'?96 �'. £'170314 1 6 . i15321 2  4':''::(' 
1 1 . 233375 � . •  4So�02 1E.. �7932 1 4620 
1 1 . 194354 8. 46915� . lE-. S2456 1 4€.C:t-
1 1 . 1 � 8. 41802b 16. c.29877 4':'E.� 1 1 . 128797 8. 412'ge4 1 6. 81$622 4';'2e. 
1 1 . 1 £%00 8. 4 1 1707 10. 814067 4E·H: 
1 1 . 1371 78 E .• 41 5979 1 6 . E:165S9 .1':'2� 1 1 . 205390 8.47893(1 1 6. 959924 ,:e.�€" 
1 1 . 1 64197 ;::. 446507 16. 903384 olt:·2C' 
1 1 . 096489 e. �8946$1 16. 802845 4';''::0 

, .1 1 . (1�61 4  8. :382E:90 16.  7S'09�'7 4..:.�(1 

1 1 8  



• 

4 . U OO  . �5 4 . He\!l • $I�O 
.; . �;�oo . 750 
4. . ;:400 . 77? 4 . e4e.e . �";'0 
4 . 84C�' . 880 4 . �(� . -:<05 
4 . �'4il10 . �$0 
4 . �':?0e . 75(1 

• ;:'E<ee . 77� 
• �;�:I�tO . 8;(, 

4 • E,S0t!' • fE;(, 
4 • tlt,0(' . �e5 
4 • 88e0 . �3� 
4 . S 1 (10 . 75(1 
4 • So 1 e:e . 77� 4 . '?l ee . EoO 4 . Slle-e . tS\!I 4 . 91 00 . %5 
4 . 91 00  . 93£1 STOP 

TABLE C - Z  
Hi storical Z - Step (Cont . )  

1 1 . (18933� :::. ;;7-:-34 1 
1 1 . ($4808 �. 2817EE. 
11 • 1 E·3S1�SI �. 462�:2( 
1 1 . 1 4 1 E.4� � . 4c*�� 
1 1 . e68977 6. 36b669 
1 1 . 0":'1936 8. 358b8(1 
1 1 . \!15�186 8. ;::54610 
11 • (1631 E.3 8. 354456 
1 1 . 1 71 31(1 8. 455327 
1 1 . 127�3E: €.o. 4207E4 
1 1 . 053S147 E:. 35352t· 
1 1 .  (14648":, 8. 344391 
1 1 .  (l43�1 4  8. 33:::508 
1 1 . (146675 6. ::';-::1?942 
1 1 . 1 8�€,73 e.. 4€.S286 
1 1 .  1 4'';739 E:. 43622\!1 
1 1 . C7U2E: 8. 371608 
1 1 .  (164825 ��. �ib2635 1 1 . 063£139 ii. 3S6it90 
1 1 . 0E.e0�7 8. 357721 

119 

1t . ;" E;� l o!,7 �(. 
Ie. ; E::,�'07 .. 6�0 

1 t • -:-�.IjE:e.4 0;":'2(1 
1 6 .  �·9�:S05 462� 
16.  7�(1('\!I$1 46�(' 16. 777 1 '?2 462� 
1 6 . 7':·82('4 462(1 
IE·. 7E,":'�'?:- 4oS2� 
16. �58E ('': �6':(1 
16. -;02�:2e' 4':'2(' 
It .• E·00�44 462(-
l b .  7:::854':· "l ';,2(" 
le. 7c:('(112 462(' 
16. 779177 4620 
lb. $:::44':.:;: 462�1 
16. S307'E:S 462£' 
16. &37426 462(' 
16. E:27 1 09 4620 
16. E·2 1 2 1 :- 4620 
16. 62:;:073 4620 



TABLE C - 3  
Non-Historical I - Step 

._.----

·s AL etJA anA SgBI I A�[ sr.ll AiLABs 4Id BT!.A..'H-ilrlL_----'.l.S 
1 . 2200 . 351) 1 0 . 7 HCl 3 7  7. S864 �  .. 1 6 . 55 Sbb CJ 1t7 1 

1 .Z2DD .32Q lD.2l:i:U:i I . ��II�l2 1 �. �d �C!iJl !Ill 
1 . 2200 . 4 bO 1 0. 7t.31 7 8  7 . !l6t. 3 !i9 1 0 . �o ' lZu 47 1 

I I��OO . !!9� 1 Q....1..YltU __ ...  _ __ .W.ll.l �(I L __ ._ ._ .Jj, •.. 1:/. !l�.o � •. _. _ .. _. __ !t.1 1 
1 ·. , zoo . 590 h l . 9 !>(,4n e  7 . &>u ) 2 &.. 3 1 7 . 1134 211 9 1t7 1 

.L..--UO? .6 32_---1 1 ... o.n \1 5_"-_ . ] .  UZ.U07._ . . . . . _ .. 1 1 . 1 d u 7 t. 1 . _ . .. . .  _ . _,.71 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 i 
1 
1 . 
1 
1 l '  
1 
1 
1 
1 
1 1 
1 1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
Z 
2 
2 
2 

. 2«100 � :' 50 

.Z6�Q .lQil 

. 2�00 . 4 60 

.Zl:DD .!ls:a 

.'2 600 . 59:> 
IIIZ�DD .UD 

. •  )C;OO . 3 50 
.3�QD . 3!lD 
. 3 C;00 . 460 
.3C;00 .!!2� 
. 3 9(,0 . 590 
• ;}900 • t.�0 
.4 300 . 350 
. It JOO . 390 
. 4 300 . . 4 60 
. 43QO .1t2:! 
. 1t 300 . . 5 90 
. H O O  • 630 
. 5 700 . 3 50 
.!:i7QO .32Q 
. 5 100 .  . 1t 60 
.:i7oa .!t2� 
. 5 700 . 59'0 
• 51!:!!:! ·.I.!lll 
. 6000 . 350 
. 6000 . 3"0 
. 6000 . 4 60 
. 6000 . 1t95 
. 6000 . 590 
. 6000 . 6 30 
. 2200 . 350 
. 2200 . l90 
.2200 . 460 
· 22°0 11t�� 
. 22�0 . 590 
.2ZQQ .tlQ 
.2600 . 350 
• ZC:QQ .390 
. 2�00 .460 

.2..-...-2.1ID.a..--A.SS L .. .
. 
· 2LOO . . 590 

1 0 .  H20 u lt  
1;,t.H3ZH 
1 0 . 7 5 d 5 1 0  10, 7..�1lfJ2 
10 . 'I 4bO H 
11 .D3231& 
1 0 . 7I:. 9C1S4 
l:l. I�lZlsl 

· 1 0 . 7£.905" 
lQ. ezz��7 
1 0 . Ci 78c6 S 
U e 07Z3Z4 
1 0 . 7&32 2 4  
1'0 . 7 o�1 0 4  
1 0 .  e l 57 a 7  
10 1 8 5 l§ d !!  
1 1 . 0 1 4" 1 <; 
1 1 � 1 1 1 2 (' 1 
10 . Cj 1 9 1 5 5  
l !';  12�Si: tj3 
1 1 . OOd1�(: 
1 1.Qb61..00 
1 l . lo�'t 7 6  
1l.!tlZ1U 
l O . Cj6!:1t H 5 
1 C. 99(155 t! 
1 l . 07CJ 1 2 l 
1 l · 144b !i 7 
1 1 . 39 1 5 1 9 
q . 52 44 6 1 
1 3 � 2 55" 06 
1 3 . 2 1 7 507 
1 3. Z0;'ljo; l 
1�IZ�ZIt 9 �  
1 3 . 3!> 683 0  
U.!I!!2�g5 
1 3 . 24 L J 'i 5  
Il. ZOOData 
1 3 . 1 7951 7  
1 3.&.l!iU!t" 
1 3 . 3 1 btl i 5  

7 .  � l;" Jlt l 
I. �101�).!I.l 
7 . :'603bd 
7 a..llllj. 7 
7 . ('S 't 2 t14 
1.101012 
7 . S 9 HZ) 
1. :iI8ln� 
7 . 572 8t)6 
I. �illlU 
7 . 6 6 5 1 07 
1.I11i!l!1i-
7 . 60 94 � 6  
71:i'J 0�9 !1 

· 7 . !i 8 bb1 4 
· lleQQ��Z 

7 . b B6b20 
7 . 7!!J 6!i6 
7. E:9 !:1:!)72 
1.e21!sZ2 
7 . 7 1 545 1.1 
111!tl�"Z 
7 . 0 0 7 593 
I�Uc,3 
7 . 72 10iJ2 
7 . 7���8� 
7 . 76� b4 4  
7 .  79721t9 
7 . 9 3 5 1 77 
8. 01�!u� 

1 0 . 222 333 
1 0 · A902 1 2  
1 0. 4 1 5 5 1 "  
1 C.ll!SP.2J 
1 0 . 2 8 2 1 43 
I 1l..J....'t.D9j) 3 
1 0. 2 1 0S5 8 
I O . 1 1u3IZ 

. lO. 1 5 5 30b 

1 " • !)t: l it H  4t 7 1 
19. :i�"c,.9:· !l 7 1  
1 0. «Id 1 7 2 1  47 1 

·�b ....li3.lit !tll 
1 7 . 02{)00 4 41 1  
12. 11b!Z2 1 :ftJ.1 
16 . 61 !>60 1t 47 1 
l�.o.'UiP.� _____ H l  
1 6 .  h '.l 4 5 (;  4 7 1  
li! .. .ii2 .lil...a ....ill 
1 7. 1 1 04 6 f,  47 1 
lL..z..(>.�'i.-t III 
16 . 61t <; 1 9 4  It 7 1  
1 b. i:Ai9.1 b !t.U 
16. 795 7 9 3  47 1 

-ll.,.BZS 7lL _____ (, U 
1 7 . 1 7 3 1 8 0  4 7 1 
11.J}.}�� . !tI.1 
1 6 .  Il!i a 00 3 47 1 
l b . �� !l1.l 
1 7 . 09 .3 94 3 47 1 
11 �O.!tlllt. �_U 
l 7 . 5d 93 1 U le7 1 
1l....l.;1.B..3.1 0 U l  
1 6 . 9i il l!1 b  1t7 l 

� 1 7 . 0053e �_ 47� 
1 7 . l9 !:1!i56 47 1 
1 7  �j_t9.l!L!L _ _ _  · __ '1.7J 
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The data used in the analyses were ob tained from Dr . John 

Kreer of Michigan State Univers i ty .  Dr . Kreer used  the data him­

se lf in previous traffic s tudiesJ �3) The data cons ist of volume 

counts taken from four separate locations on the streets  of 

Toronto between 9 / 2 4 / 7 3  and 1 2/ 10/ 7 3 .  At each locat i on vo lume 

c ounts were obtained from each of  two adj acent lanes . I n  th i s  

s tudy the volume counts from each l ane were added together to 

form a s ingle volume count for each location . The four locations 

are shown in Figures Dl and D2 ( indicated by the detector pairs ) . 
. 

Note that the t raffic is eas tbound at location 3 whi le i t  i s  

westbound at  locat ions 2 and 4 .  ("Locat ion" numbers are equiva­

lent to "sens or" numbers e lsewhere in this report . ) 

The volume counts were broken down into S -minute t ime inter-

vals , numbered from I to 2 88 for each day . There were 76 days of 

data .  Except for 2 days that were miss ing ( 1 1 / 2 5 / 7 3  and 1 2 / 8 / 7 3 ) , 
the days were consecutive and included weekends . The fi rs t  29 

week days , with the exception of the October 8th ho liday ,  formed 

Part I of  the data for this s tudy . The remaining 2 3  weekdays 

formed Part 2 of the data . 

Part 2 of the dat a is  used as historical data in this s tudy ,  

whi le Part I is used to tes t  the predictors . Some of the data 
. 

used in Part 1 is  shown in  Figures D3 through D22 . Data for each 

day of the week are shown for each locat ion . The day shown at the 

top right hand corner of each figure represents the part i cular 

1 2 6  
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day o f  tes t ing ( from the 76  total days ) . The data show the da i ly 

variations at each locat ion as wel l  as different characteristics 

peculiar to e ach locat ion .  The gaps shown are typical of the 

data avai l ab le .  

There are 9 8  gaps ( a  gap is  a group o f  consecut ive time in-

tervals having no data) in Part 1 of  the data .  The average s i z e  

o f  a gap i s  3 8 . 5 5  t ime intervals or 3 . 2 hours . The actual s i zes 

vary from 1 t ime interval to 1 4 8 . In this prediction analysis  

the gaps were processed  as  fol lows . Each time a gap occurred , 

the calculation of  the prediction errors at the t ime o f  the gap 

and at the next four or five consecutive t ime intervals of exi s t ­

ing data (depending on whether the 1 - o r  2 - s tep predictor was 

be ing us ed - - see text )  was not included in the calculation of 

the total predi ction error measures (mean square error , mean abso ­

lute error and mean of  the fourth power of the error) for the 

evaluation runs . This was done in order to allow the predictor 

to re - init ial i ze after pass ing  through a gap . 
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APPENDIX E 

RELATIONSHIP OF UTCS 
SECOND AND THIRD GENERATI ON PREDICTORS 

. TO ARIMA PREDICTORS 



In this appendix we show that : 

1 .  The thi rd generation UTeS traffic predictor is  of 

the s ame form as a Box-Jenkins optimal predictor 

for an ARIMA( l , l , l )  proc es s .  I n  this case the 

ARIMA (l , l , l ) form predictor acts  on the sequence 

of raw traffic volume . 

2 .  The s econd generati on UTeS traffic  predictor con­

s i de red as a predictor of  the difference between 

current day counts and historical average counts 

is l ikewise  of the form of an opt imal ARlMA ( I , I , I )  
predictor .  

3 .  I f  the his torical average traffic counts for use 

in the s econd generation UTeS predictor are derived 

as an exponential ly wei gh ted moving average ( over 

,pas t  days) ,  then the second generat ion predi ctor i s  

equivalent in  form to an optimal ( s easonal) 

ARIMA (l , l , l ) x ( 0 , 1 , 1 ) 28 8  predictor act ing on the 

raw traffic counts . 

E . I THIRD GENERATION AS ARIMA ( l , l , l ) ' 

First to deri ve the connect ion between th ird generat ion and 

ARIMA predictors , we shal l he  making trans formations in notat ion 

in order to ach ieve con formi ty w i th Box -Jenk i ns notati on� (and to 

a l low us to make apparent the points of  s imi larity with the second 

generation UTeS predictor) . 

Firs t  note that equat ion 2 . 3 of Part 1 ( Sec . 4 . 2 ) can be 

brought into a s impler form us ing the speci fi c  equat ions (2 2 ) , 

l S� 



( 19 )  and ( 1 8) o f  that s ame s e ct ion : 

� A 
(E . l ) Vk ( i + j ) a ( 1  - aj ) �k ( i )  + aj Vk ( i )  

, ; , In thi s  equati on Vk ( i )  is the volume in t ime period i at s ens or k . 
,., 
Vk ( i+ j ) is the pre di ct ed volume at t ime p er i od i+j , and �k ( i )  is 

an exponenti a l  average of the volume incl uding the current value : 

A A 
(E . 2 ) Pk ( i )  = a�k ( i - l )  + ( l - a) Vk ( i )  (equati on 1 7 ,  Part 1) . 

Us ing E 2 , El can be furthe r trans formed i nto : 

,., ,., 
( E . 3)  Vk ( i + j ) a ( l - aj ) B�k ( i. - l )  + (aj + ( l - a) ( l - aj ) ) Vk ( i )  

Now we make the trans format ions o f  notat i on .  Let Z t denote the 

vo lume count during t i me period t ( at the spec i fi c  s ensor) so Z t 

replaces Vk ( i )  (wi th t rep l ac ing i) . The exponenti a l  ave rage o f  
" 

Z t wi l l  be denoted by !
t s o  that 'Z'

t replaces �k ( i ) . The predi cted 
A 

value of Z t+j  as determined at time t w i l l  be denoted by Z t+j and 
,., ,., 

so Z t+j rep laces Vk ( t+j ) .  The symb o l  0 rep l aces the symbo l a ( to 

denote the s ame quantity) . Fina l ly , A wi l l  rep l ace the quant ity 

(l- aj ) a ,  or to summarize : 

-
( ll . 5 )  Z t a 0Z t _ 1 + ( 1 - 0) Z t 

(E . 6 ) 0 = B 

1 5 2  



Equations B4 and B S  define a predictor of  the same form as 

the B-J opt imal  ARIMA ( I , I , l ) predic tor as is read i ly ver ified by 

referring to Sec . S . 4 . 6  of Ref . 1 .  
E . 2 SECOND GENERATI ON UTCS PREDICTOR AS ARIMA( l , l , l ) 

Next we show the connection between the s econd generation 

UTCS predictor and the opt imal ARIMA ( l , l , l ) pred ictor . Aga in 

the UTCS notation w i l l  be brought into conformi ty with the nota­

t i on to b e  us ed for common analys i s . 

From Sec . 4 . 1 . 1  o f  Part I equat i on 5 c a n  he rew r i t ten (us i ng 
equations 1 ,  2 ,  3 and 4 ) : 

(E . S) V et) - m et )  = C ( t - l ) (a+y) + ( l - a - y) r ( t - l) 

and equation ( 2) (Part 1) can b e  wri tten (us ing the fact that 

B = 1 - a) :  

(E . 9) C (t) = aC (t - l )  + ( l - a) r ( t )  

Now r e t) = f ( t) - m e t)  where f ( t) i s  the actual traffic count dur-

ing time interval t and m e t) i s  the histor i ca l  average , i . e . , an 

average (smoothed or unsmo othe d ,  see Appendi x F) o f t raffi c counts 

for the same time of day taken over a numb er of previous days . 

The di fference , V e t) , between the actual and h is tor ical count s is 

what is  predicted by the ARIMA ( l , l , l ) type predictor . The pre ­

dict ion of volume at t ime t is V et ) , there fore V (t ) -m (t) is the 

predi c t ion of r et)  made at t ime t - l .  Thus rep l ac ing r e t) by Z t ' 
" 

C ( t)  by !
t and V ( t) - m (t) by Z t we have : 

" 
( B . IO ) Z t+ l = AZ

t _ l + (I - A) Zt 

1 5 3  



(E . l l)  ft = 

(E . 1 2 )  A = 1 

(E . 1 3) e = a 

0Z + t - l  

where 

- a -

and 

( 1 - 0) Z t 

y 

Now E l O  and B l l  are i dent ical to E4 and TIS (with j = l )  and so 

are of the form of op t imum AR I MA ( l , l , l )  pred icto r s . 

The parameters � and 0 l i ke Z t stand for who l ly d i fferent 

quant i t i es than they did in the d i s cuss ion of UTCS Second Genera­

t i on predictors ear lier . 

B . 3 SECOND GENERATION AS ARI MA ( I , l , l ) x ( 0 , 1 )
28 8  

-

Next we show that the aspect of  the s econd generation predic-

tor whereby i t  works on the di fference between actual volume and 

his torical average vo lume i s  its e l f  to b e  found in Box and Jenkins 

Seas onal ARIMA mode ls . More speci fi cal ly , i f  the his torical ave r ­

age i s  formed a s  an exponentially we ighted mov ing average ( t o  b e  

exp l ained be low) , then the Second Gene rat ion UTes predictor b ecomes 

of the form of an opt imal ARI MA ( l , l , l ) x ( 0 , 1 , 1 )
2 4 0  

pred ictor . 

Before we g ive th e demons tration of this , wh ich is l engthy , we 

note that the resul t is not used e ls ewhere in thi s  report . The 

primary s i gnificance of the result is to sugges t that the UTCS 

Second Gene rati on method of  incorporating his torical data is con­

� i s tent wi th the ph i losophy of Box and Jenkins who devot e  a whol e  

chapter t o  s easonal mode ls . This sugges ts  that dea l ing w i th the 

der i ved t ime series cons i s t ing of the di fference between the 

actual and histor ical average volumes is we l l  founded . 

1 54 



Denote the actua l t ra ffic vo l ume at t ime t by Zt ( l ike in the 

Th ird Gene rat i on and un l ike the t reatment of the Second Generat ion 

case dis cus s ed j us t  ab ove where Zt rep resen ts the difference 

between the actual an d the his torical ave rage vo l ume ) . 

I t  then turns out that for Z t representing five minute vo l ­

ume counts that Z t - 2 88 is the volume count for the same time of 

day as Z t (s ince thes e  are 2 8 8  f ive -minute t ime periods in one 

2 4 - hour day ) . 

Let us denote the exponent ial ly weighted h is torical average 

by ht (ht rep l ac ing m et ) ) , th en 

(U . 1 4 )  h t • qh t - 2 8 8  + ( 1 - q ) Z t - 2 8 8  

The quant i ty q determi nes the "memory" of  the exponen t i a l  mov i ng 
, 

average which determines ht • Exp l ici tly :  

co k 
(E . IS )  ht = ( l - q )  t q ht - k - 2 8 8 k= l  

A rough idea of  the number o f  pas t days dat a whi ch enter into the 

I exponent ial average ht is g iven by � . Thus if  q = . 9 S ,  t hen 

l�q = 20 and rough ly speak i ng 20 days enter into the his torica l 

ave rage . The we i gh t  of  the 2 1 s t previ ous day ' �  vo l ume ( a t  the  
s ame pa r t i cu l a r  t i me o f  day , 5 - m i nut e p e r i od )  �nt�r�  i n  ht w i t h a 

�eight wh i ch is only 0 . 36 t imos tho contri but ion for the same f i v� ­

minute time period on the first  previous day . The 4 1 s t  day in the 

pas t has a contribut ion equal to . 36 tha t of the 2 1 s t  day or 

( . 36 ) 2 = . 1 2 9  t imes that of the immedi ately preceding day , etc . 

l S S  



• 

Exponential  averages are a common feature in ARlMA predictors ; 

they have , as we see , a smoothly decreas ing memory of the more 

remote pas t .  (However ,  in some cases  we are deal ing wi th memo ­

ries of minutes rather than days . )  The exponential moving aver­

age is also use ful b ecause of  its  eas e  of computation .  Considera­

tions should be given such that the historical average for use in 

the UTCS Second Generation predictor be produced as an exponent ial 

moving average . In any cas e , we proceed to  analyze the predictor 

if  it is so cons tructed . 

Letting ht be g iven by E14  or E l S ,  we now define : 

(Thus Ut here is  the equivalent of r e t) in the treatment in Part . 

1 ,  Sec . 4 . 1 . )  We have shown that the Second Generat ion predictor 

is equivalent to predicting Ut us ing an ARIMA (l , l , l ) predictor . 

Equations ElO  and E l l  give the form of such a predictor but als o  

we have that : 

is  equivalent to  EIO  and El l ,  as is eas i ly shown by el iminat ing 
!

t between equati ons ElO and n 1 1 .  * (See also U - .1 ,  Rc r .  1 J Eq . 

" 
* �) Z t+l  = �!

t- l + ( l - A ) Z t 
b)  Z

t a O!
t - l + ( 1 - 0) Z t 

" 
d) +subst itute (b ) into (a)  Zt - l  

� 
sub tract ex ec) from (d) Z

t+ l -

+ ( l - A ) Z t - 0AZ t _ 2 -

, , ' 

= A (0Zt _ 2 + ( l - 0) Zt _ l ) + ( l - A ) Zt " 
0Zt = A (0Zt _ 2 + ( 1 - 0) Zt _ l ) 

0 ( 1 - A) Z t _ l = ( A - 0) Z t _ l + ( l - A) Z t 

1 5 6 . ...' 



" 
5. 4. 2 2 ; remember at = Z t - Zt ' A � 0 - + ) . 

Since we are now dealing w i th the d i fference between the 

actual volume (now denoted by Zt) and the h istorical average ht , 
equation E I 7  becomes : 

Now substituting for Ut from equat ion 8 1 6  we have : 

" 
(E . l S) Z t+ 1 - ht+ 1 - 2 8 8  � ( 1- 1 ) ( Z t-h t _ 2 8 8) + ( A -O ) ( Z t _ l  -

" 
ht - 1 - 2 8 S) + O (Z t - ht- 2 8 8) 

" 
Equation E 1 8 gives th e predicted value of Zt+l g iven Z t '  Z t- I '  
Zt- 2 ' etc . , i ncluding th e historical averages as def ined in E14  

or ElS this prediction is established according to the UTes method 
using historical averages . Equat�on E 1 8 is me rely an algeb raic and 
not at i onal transformation of equation 2 3 from Part 1 .  Our next 
task is to set down the form of an ARlMA ( l , I , I ) x ( 0 , 1 , 1 ) 2 8 8 
I-step preqictor and show that it is of the same form as equat ion 
E 1 8. From Sec. 9. 1 of B - J  (Re f. 1 ) , we have t hat an ARl MA ( l , l , l )  

x ( 0 , 1 , 1 ) 2 8 8  mode l can he expre s se d :  

where q ,  a ,  t' = a - 1 are arb itrary parameters (satisfy ing certa i n  
restrictions ; see Ref. 1 ) . 

The symbol B represents the backward sh ift operat ion ;  

�Z t = Zt- I . Bxpanding out equation E 19 we obtain the equat ion 
that it is a shorthand for : 

1 5 7 



( E . 20 )  Z t - ( l + � ) Z t _ 1 + �Z t - 2 - Z t - 2 8 8  + ( 1 - � ) Z t - I - 2 8 8  

- tZ t - 2 - 2 88 = at - tat _ l - qat - Z 8 8  + q9at - I - 2 8 8  

� 
Us ing the s tandard BJ rules ( i . e . , sub s t i tuting ZT - Z T for aT ; 

s ee Eq . 5 . 1 . 2 2 ,  Ref . l ) for p roducing opt imal I - s tep predictors 

from ARIMA mode l s , we ob tain : 

� 
(E . 2 l) Z t = ( l+ t) Z t _ l - tZ t _ 2 + Z t - 2 8 8 ( 1 - �) Z t - I - 288  

� � 
+ �Z t - 2 - 2 48 - 0 (Z t _ I - Z t _ l ) - q ( Z t- 2 8 8 - Z t - 2 8 8 ) 

� 
+ q0 (Z t - 1 - 2 8 8 - Z t - l - Z 8 8) 

I t  i s  now a matter o f  algeb ra to  show that E 2 1  i s  equivalent to 

EI8 together w i th E l6 (rememb er that t=9- A ) .  The parameter ht mus t 

b e  e l iminate d  between El 8  and E16 . The chore is rathe r tedious 

but the princip l e  is the s ame as de riving E l 7  from EIO and E l l  • 

. The trick i s  to s ub t ract from equation E 1 8  the s ame equat ion 

evaluated at t = t - 2 8 8  and mult ip ly by q :  

� � 
(B . 2 2) Z t+l - qZ t+ I - 2 8 8  - ht+ I - 2 8 8  + qht+ 1 - 2 . 2 8 8 ) 

= ( l - A ) (Z t - Z t - 2 8 8 - ht - 2 8 8+qht - 2 . 2 8 8) 

+ ( A - e) (Z t- I - Z t - I - 2 8 8 - ht - I - 2 8 8 - qht- I - Z . Z 8 8) 
� � 

+ a (Z t - Z t� 2 8 8 - ht - 2 8 8+qht - 2 . 2 8 8) 

Now us e the fact that ht - qht - 2'8 8= ( I - q) Z t (obtained immediately 

from equat ion 16 ) to  e l iminate adj acent pairs o f  te rms o f  this form , 

c � g . , - ht+ I - 2 8 8+qh t+1 - 2 . 2 8 8 is  �ep1aced by - ( 1 - q ) Z t+ 1 - 2 8 8 . Equa ­

t ion li 2 l  ( evaluated at t= t+ l ) resul ts . 
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Equat ion B 2 l  can thus be regarded as the exp l i cit form of 

the UTes Se cond Generati on predictor when the his torical average 

is calcul ated as an exponent ially w e i ghte d  moving average . Th is 

has advantages of computat i onal s imp l i ci ty as we l l  as theoretical 

reas onab lene s s . The rather h i gh de gree of  complexity (cf.  Eq . 3 

of main text , Part 2 , which speci fies the s ame predi ctor) res ults 

from e l iminat ing al l imp l i c i t  intermedi ate quant ities - - for 

actual imp l ementat ion the imp l i cit forms are s imp l e r  and morc con­

venient . In th is d i s cus s i on Z t has represented the actua l 5 -

minute traffic volume count . Barlier in th is Appen dix and e l se ­

Where throughout the report ( as noted in conte xt ) , Zt represents 

the difference between the actual volume and the h i s torical aver ­

age i f  his torical data are be ing us ed ( e . g . , Se cond Generat ion) � ­

but Z t a lways repres ents the volume data thems e lves i f  h i s torical 

data are not being use d  ( e . g ,  Thi rd Generat ion) . The reason fo r 

the shift is s o  that Z t always repre s ents the b as i c  time s eries  

to be predicted ( bas ed on i t s  current and pas t value s ) ,  whatever 

the context . 

l �9 
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Thi s appendix di scuss e s  the methods u s ed to obtain the c o e f ­

fic ient s for the Four ier smoothing curve s ,  examines the results  

obtained by varying the number of  Fourier coeffic ients and part ial l y  

t e s t s  the results  us ing pred ic t ing algorithms . 

F . l  METHODS FOR OBTAIN I NG FOURIER COEFF I C I ENTS 

The data as discu s sed in Appendix D ,  has dai ly general shapes 

pecul iar to e ach s ens or ( i . e . , pe aks and val leys o ccur at ab out 

the same time each day with some var iation in the ir he ights and 

depths) . Hence , it i s  reas onable to use a mathematical expres s ion 

in s ines and cos ines with the l ength of a day ( 2 8 8  5 -minute time 

interva l s , see Appendix D) as the ir period to repres ent the common 

da ily trend plus a rando� error £ 1j . 

Thi s  is  wr i tten as fo l lows : 

where V1j i s  the volume counted in the 1 ' th interval of time o f  

the j ' th day , and 

F2 ) Va = ao + � [ a . cos ( 2w i 1) + bl. s in (�) ] � i= l  1 nr 

where 0 0 , a i ' s and b i , s a re the 2 1. + 1 tl l�ou r i c  .. " coe f f i c i en t s . 

A standard model i s to as sume tha t t he e x p e c t ed value o f  (. 9. ' . J  2 is zero . The £ 1j ' S are uncorrel ated and have equal var iance a . 
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Th b o  d t o  t f 2 
° pure n01° se var lo ance s 2p lO S e un lase es lma e 0 a l . e . , 

8i�en by 

F3) 
2 8 8  

1: 
f,= 1 

where nf, i s  the number of days which have data in the 1 ' th interval 

and where 

F4 ) 

Thus , Vt i s  the average count in the f, ' th t ime interval . Since it 

is convenient to work wi th Vf, and nf, ' equat ion ( F 1 ) is averaged over 

the nf, days , i . e . , 

FS ) 

nf, 
1: e: f, 0 

j = l  J 
nf, 

With VAR=variance and COV=covariance , then 

.. .. 

F6 ) VAR (Vt ) = VAR (Vt ) + 2COV (Vt ' £1) + VAR (Et ) 

and 

, 

.. .. 

F7 ) COV (Vt , V1 , ) = COV (Vf" V1, ) + COV (V1 ' £1 ' ) 

.. 

+ COV (Vt " £1 ) + COV (e: t , Et , ) = 0 

Thus , the (we ighted) sum of  squares is  g iven b y  

1 6 2  
I 



• 

P B )  5 5  = = 

, 
� 

(Ref . : The Analys i s  of Var iance by 5che ffe , page s  1 9  and 2 0 . )  

The sum of squares i s  minim i z ed with respect to ao ' a .  and b .  1 1 
by different iating equation ( F 8 ) with respect to ao ' ai and b i 
and setting the result ing partial  derivative equal to z ero . Thi s  

l eads t o  the following equat ions in the unkno\ms ao ' a i and b i . 

, 

F9 ) 

1 .i I < L .  

The va riance e s t imate ( i . e . , Four ier res idual var iance) der ived 

from the above sum of squares i s  g iven by 

1 6 3  



Filt)  

2 88 ... 
_ 2 t nl, (VI, - VI,)  

2 1 = 1 S 2L+ l = --�----------2 8 8  - ( 2 L+ l )  

2 2 The expected value Qf S 2L+ l ' E (S2 L+ l) ' i s  
, j : :  f \ 

whe re E (V I,) i s  the e xpected value o f  VI, i . e . , the t rue means of  

at  the t ime inte rval 1, .  Thus , when the s econd te rm is zero , 

E ( S�L+ l ) = a2 and the data has a good fit in VI, . Thus , S�L+ l c an be 

compared to the pure noise  or error vari ance S2 P (equat i on F 3 ) . 

The e xpected value o f  S 2p is  known to b e  equal to a 2 regardless 

of the fit used ( Ref . Appl ied L inear Sta t i s tical Models  by Neter 

and Was serman pages 1 1 7 - 1 1 9 ) . The F s tat i s t i c  g iven by : 

Fll ) 
2 . 2 F = S 2L+ l/S  p 

... 
is used to test the fit of V t .  (An exce s sive l y  large value means 

an uns atis factory fi t . )  

r: . 2  TI I B  E F F ECTS O F  VARY I NG 'I'I I B  NUM B E RS O F  FOUIt ! E R  CO E F F  I C I E NTS 

For Part 1 of the data (see Appendix D) , the number of Fouri e r  

coe ffic ients cons idered was 1 1· through 2 1 ,  3 1  and 4 1  for a l l  

s ensors . In addition , for s ensor 4 ,  calculations for 5 1  and 8 1  

coe ffi cients were made . The results are shown in Fi gure F l .  

Thi s  shows the Fourier res i dual s t andard deviation S2 L+ l  (section 

F . l ) versus t he number of Fourier coeffic ient s .  The pu re 

error s t andard deviat ion Sp is plotted in F i gu re Fl to show the 
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l imit to  wh ich 82 L+ l app roache s as the numb e r , 2 L+ l ,  of  Fourier 

coefficient goes to  2 8 8 . The calcu l at ions were repeated for 

Part 2 of the data with the number of Fourier coeffic ient s C O Il -

s i dered being 1 1  through 2 1 , 31 and 4 1 . The s e  results are 

shown in Fi gure F2 . By the F St at i s t i c  (equat ion F l l ) , 

a l l  values of S�L+ l shown are s ignificant ly larger than the cor ­

re spond ing S 2p value except for sensor 3 , 4 1  Four ier coe f�icient 

for Part 2 .  Thi s  tends to indicate that large numbers o f  Four ier 

coeffic ien t s  are needed for "good f i t . "  I t  can be not iced from the 

F i gures Fl  and F2 that the ru t e  o f  change o f  S 2 (,+ ) w i  th re spec t t o  
the number o f  Four ier coe f f ic i en t s  i s  qu i t e rap i d  whe n t he n umbe r 
is less  than 2 1  in contrast  to when the number o f  coeffic i ent s i s  

greater than 2 1 . Thi s  fac t  is  used a s  the bas is  for some predictor 

calcu l at ions d i scu s sed in Sect ion F . 3 . I t  was �rigina l ly 

planned to use both p art s o f  the data in the predictors ( i . e . , 

Part 2 o f  the data to predi ct Part 1 of the dat a and Part 1 t o  

p re dict Part 2 ) . As an indi cat ion of the expe cte d e ffect iveness 

of the various smoothed averag es when calculated on one part of 

the da ta and u s ed to p red i c t  on the othe r  p o r t  o f  t he d a ta , two 
measures a re i nt roduc ed . The s e  measures used t he we i gh t cll s um o f  
squares of the di f ferenc e s  be tween the smoothed value s  computed 

on Part 1 (Part 2) and the actual averages comput ed on Par t 2 

(Part 1 ) . Th� measure , Si , j , 2L+l  ( see equat ion F 1 2 ) , which i s. 

formed from this  sum of  squares , has as i t s  denominator the same 

quan t i ty ,  2 8 8 - ( 2 L - l ) , as doe s  S2 L+ l and i s  thus eas i ly compared 

to 82L+ 1 .  

1 6 6 



.... 
0\ ...., 

H 

38.  

33 

z 0 -f-o 28 < ... > � c::I 
c::I III: < c::I 2 3  � f-o II) 

1 8  

13 

8 

1 0  Z O  3 0  ",0 

PART 2 OF DAn 

• SENSOR #/ 1  

e SENSOR It !  
m SENSOR 11 3  
Y SENSOR iI4 

S2L+1 - FOURIER RES I DUAL S���DARD DEV IAT I ON 

- - - S
p 

- PURE SOI SE snSDARD DEV I AT I ON 

� Z Z 8  
s o  6 0  7 0  8 0  9 0  

Z L+ l . , O f  four i e r  Coe f f i c i en t s  

F IGURE F2 . FOUR I ER RES IDUAL STANDARD DEVIATION AND PURE NOI SE STANDARD DEVIATION 
VS . NUMBER OF FOUR I ER COEFF IC IENTS 

• 

• 



The other mea sure E ( s e e  equat ion F 1 3 ) , has this sum 
i , j  , 2 L+ 1 

of squares d iv i ded by t n n . and i s  thus the square root of the 
1,=1 ,1[, 1 

we ighted mean of the squared differences . 

F I Z )  

F 1 3 )  

The definition s  are a s  fo l lows : 

e: . . Z L  1 = 
1 , ) , + 

( ZL+ l ) ] )  1/ 2 

2 8 8 ... Z 2 8 8  1 / 2  t n n . (V n . - V . ) I [  t n . ] ) 
1,= 1 ,1[, 1 ,1[, ) 1, 1 1,= 1 1, 1 

where i = 1 ,  j = Z and i = 2 ,  j = 1 .  l Iere V 1l. 1 uenote�  V1l. ca lcu ­

lated on Part 1 o f  the data , V1l. 2 denotes V1l. ca lculnted on Pa rt 2 ,  

VR, l is VI, calculated on Part 1 ,  and VR, l i s  VI, is  ca lculated on 

Part Z .  

As would b e  expecte d ,  S l , 2 , 2 L+ l  in Figure F 3  and SZ , l , 2 L+ 1 in 

Figure F4 , are higher point by poin t  than the corresponding SZ L+ l 
in Figure F l  and S2 L+ l in Figure F2 . Sens or 4 in F igure F 4  

seems t o  indi ca te that a l imit for S2 1 Z L+ l  of about 1 8 . 5 is , , . 

reached for 3 1  � 2 L+ l � 8 1  for that part icular s ensor . Much mor e  

informat ion can b e  perce ived from Figures P S  and P6 . T h e  fou r 

hor i z ontal da shed l i ne s in the se two figure s  arc the va lues 

obta ined when V1l. o f  Part j i s  used for V J1.j 
Ei , j , 2 L+ 1 for each sensor . The s e  results  

For a l l  four s ensors for both Part 1 and 

i n  
are 

Part 

the equa t i on for 

cal led E i , j , 2 88 . 
2 ,  the two f igures 

indicate that the average curve VJ1. would g ive better results  in 
-

the pred ictor than Vi of 2 1  coefficient s which in turn would g ive 
-

better pred ictor resul ts than the V J1. for l e s ser numbers o f  

1 6 8 
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coeffic i ents . This i s  shown to be true in Section F . 3  with some 

calculations . 

F igure F 5  indicates that a fit , V1 ' of 4 1  Four ier coeffi -

c ients i s  better for pred i c t ion than the average curve , V1 '  
at s ensor 3 .  Similar ly from Figure F6 , a fit , V1 ' of 31  and 4 1  

Four ier coeffic ient s for s ensor 3 ,  and 8 1  Four ier coefficient s 

for s ensor 4 shoul d  be better for use with a pred ictor . This was 

not ver i fied with actual predic tor c alculations . But results in 

Tabl e  F2 in s ect ion F . 3 when comp ared with Tab l e  F1 in thi s  sec ­

t i on sugg e s t  this i s  true , although not s i gn i fi cantly . The 

measure in Tabl e  F l  shows how l e s s  accurate the f i t s  of 2L+ I coef -

ficients are relative to the average curve . I t  i s  to be not iced 

that the entry - 2 . 64 1 \  means that it is  2 . 6 4 1 \  better to use the 

fit of 41 coefficient s of Part 2 than the average curve , V1 , 
of Part 2 to approximate the average curve of Part 1 .  ( I n other 

words , the error of us ing 41 Fourier coeffic ient s to determine 

the average is 2 . 64 1 \  l e s s  than the error us ing the stra ight 

hi storical ave rage , ce rtai n ly a very s ma l l  di ffe rence from a 

practical po int o f  view . ) I t  is s een that , except perhap s for 

very high l evel s  of smoothing , the straight average genera l l y 

g ives more accurate pred ic t i ons . 

2L+ 1/Sensor 

4 1  
2 1  
1 3  

Ta h l e  F I  

1 00 X (E 1 , 2 , 2L+ l - H 1 , 2 , 2 8 8 ) E l , 2 , 2 8 8  

1 

3 4 . 4 1 \  
1 0 5 . 8 2 \  

2 

2 9 . 9 1 %  

1 7 3  

3 

- � . 6 4 1 %  
' 3 . 7 7 3 %  

4 

2 1 . 7 7 %  



F . 3  SOME PRED I CTOR RESU LTS 

Al l p redictor calculations in this paper were predict ions on 

Part 1 of the data . This  section d i scus ses some o f  the results  

for the Second Generation predictor described by the fol lowing 

equat ions and di scus sed in the body of the report . 

F l �  !t - 2 , 2L+ I  a a!t - 3 , 2L+ l + ( 1 - a) Z t - 2 , 2L+ l 

,. 
Z t , 2L+ l = a!t - 2 , 2L+ l  + ( 1 - a) Zt - l , 2L+ l 

where Z t , 2L+l = Vt - Vt , 2 L+ l ,  

Vt i s  the volume c·ount a t  t ime interval t in Part 2 of the data 

and Vt , 2L+ l i s  the volume count at  t ime interval t of the Four ier 

fit of 2 L+ l  coeffic ients for Part 2 of  the data . The notation , 

Vt- Z means the count at  two t ime interval s  before t ime interval t .  

The a ' s and a ' s  were optim i zed for each sensor and for each p ar ­

t icular " Four ier" fit . The criteria for opt im i z ing the a ' s  and 

the a ' s i s  to find their values which g ive the minimal val ue , 
" 

N ZL+ I ' of the root mean square of the error (error = Z t - Z t ) .  

The N 2L+ I
' s are sma ller for a l l  the sensors when the average 

curve is used for Vt in the pred ictor than when Vt is the f i t  o f  

2 1  Fourier coeffi c ients . Thi s  i s  shown i n  Tab l e  F Z . This table 

shows ihat a fit of 1 3 Four ier coefficients i s  1 0 . 5 % l es s  accurate 

at sensor 1 than when us ing the (unsmoothed) average curve such as 

Vt . In the Table , N 288 i s  the value obtained when the averag e 

curve , Vt , i s  used for V t .  
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1 0 0  X 

2L+l/Sensor 1 

2 1  5 . 4 % 

. 1 3  1 0 . 5 % 

Tab l e  F Z  

(NZ L + l  - NZ 8 8 ) /N Z 8 8  

2 3 

3 . 7 % . 2 5 %  

4 

1 .  9 %  

Note t hat when the c ommon entries in Tab l e  F l  and Tab l e  F 2  are 

compared , a lt houg h the magn itudes  are d i f ferent by  about a power 

of 1 0 , Tab le Fl does indi cate wh at is to b e  expected in Tab le F2  . 
... 

For example , at s ens o r  1 ,  us ing the average V i for Vi i s  better  

th an us ing the fit of 2 1  Fourier coe fficients , e tc . 

F . 4  SUMMARY 

In conc lu s i on ,  i t  i s  b e s t  to use a relat ive ly high f i t  o f  

the h i s torical dat a  t o  ob t ain the b e s t  p redictor results . Th is 

fit can be chos en by an examinat ion of  the dat a  like that given 

in F i gure s  FS and F6 . I f  h aving such a h i gh fit is not fe as ible 

(because o f  hi gh cos ts  o f  comput a t i on ,  e t c . ) ,  then i t  is best to 

use the s t raight curve than to use a Fourier fit  of sma l l  numb e r  

of coe fficients . The aforement i oned examination i s  les s expen­

s ive and t ime cons uming than to  act ua l ly use p re di ctors on the 

dat a to arrive at the s ame conclus ions . 

Th is  s tudy h as indicated that the average . curve le ads to more 

accurate p redictors than do Fouri er fi ts  of the ave rage curve 

us ing up t o  30 or 40 or even more coe fficients . Fourie r  fi ts us ing 

even high e r  numbers of coefficients may lead t o  b et te r  p redict ors 

b ut are apparent ly only very s l i ght ly b etter th an the ave rage curve . 
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