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ABSTRACT

The objectives of this study are to 1) review and assess the
state-of-the-art of prediction algorithms for urban traffic control
in terms of their accuracy and application, and 2) determine the
prediction accuracy obtainable by examining the performance of
general time series analysis methods with actual data. This report
is divided into twojparts. Part I discusses the review and assess-
ment, while Part II examines general time series analysis methods.

Accurate prediction algorithms are necessary for the effective
operation of computerized traffic responsive control systems. These
systems offer the potential for reducing traffic congestion and
improving operational efficiency in the existing urban roadway system.

~ Although a number of prediction algorithms have been proposed
and-studied for urban traffic control, two algorithms are dominant:
the‘Second Generatién and the Third Generation predictors of the
Urban Traffic Control System (UTCS). Both predictors are based on
single-location traffic measurements. Both algorithms use the linear
combination of residues (differences between traffic measurements and
either historical data or smoothed traffic data) as the basic feature
for prediction. The Second Generation predigtor requires historical
dafa as the reference. The Third Generation predictor does not
réquire historical data and makes predictions based on current traffic
measurements only.

In the review, (i.e., Part I of this report) test results
showed that the predicted values of both the.Second and Third

1



Generation Predictors tracked the trend of the actual values of the
volume measurements, and both algorithms improved the prediction
compared to using the current measurement as the predicted value.
However, in both predictors the predicted values time-lagged the
actual measurements. Also, the Second Generation Predictor worked
consistently better than the Third~Generation Predictor. This
implies that the urban street traffic pattern does have considerable
repeatability, so that the historical volume data.is very desirable
even for short-term traffic predictions.

In Part II of this report a general technique was developed for
time series prediction and was applied to the problem of determining
6ptimum predictors for traffic volume. The technique was developed
for optimizing ARIMA (autoregressive integrated moving average - see

Box and Jenkins Time Series Analysis and related predictors). Second

énd third generation UTCS predictors were within the general ARIMA
framework'and a systematic probe of a very general class of predictors
tehtatively showed the simple second and third generation predictor
forms to be optimal within a large class including ARIMA and certain
non-linear adaptive extensions. The best parameters to use are
discussed. All empirical observations were based on actual traffic

volume data collected on streets in Toronto.



PART 1I

" REVIEW AND ASSESSMENT OF PREDICTION
ALGORITHMS FOR URBAN TRAFFIC CONTROL



1.0 BACKGROUND

In general, there are two types of urban roadway control
sYstems} namely, the street network control systems and the free-
way control systems. The subjects which are studied here concentrate
on street network control. The prediction algorithms in urban street
network control are designed to assess the short term variations of
the traffic based on current and/or past traffic measurements, so
that the available traffic data can be used as the basis for traffic
control action determination. Essentially, the main intended purpose
of the prediction algorithm is to compensate for the time lag between
the traffic measurement and the traffic control action so that the
effectiveness of the traffic responsive control actions can be fully

realized.

e ————

In urban freeway control, incidentnaétection algorithms are
counterparts of the prediction algorithms. The main purpose of the
inéident detection algorithms is to reduce the time delay between
the occurrence of an incident and the contrel action for removing the
effect caused by the incident. Although incident detection was not
the major subject under review, the concepts used in incident detec-
tion, such as traffic data smoothing and the correlation between
traffic measurements and special events were quite relevant and
useful in assessing the traffic prediction algorithms.

2.0 INTRODUCTION

In a real-time traffic-responsive urban traffic control system,
the optimum signal timing is a function of the traffic in the network.
The control actions are derived from the traffic measurements. In
most real-time control systems, there is an inhcrent time lag between

the system (traffic) measurement and the control action. This time
4



lag prevents the real-time control algorithm from realizing its full
effectiveness. Furthermore, time lags lead to potential oscillation
- both in the control action itself and the resulting traffic flow.
Methodoiogies which incorporate short-time traffic prediction into
control algorithms therefore are very promising in the enhancement
of the effectiveness of real-time control.

A functional representation of a typical real-time traffic
control system is shown in Figure 1. In this system, the traffic
data are gathered by the detectors on the road. These data are then
processed to determine the traffic state (e.g., the traffic volume)
of the system. The control commands are then generated based on the
traffic state. These control commands are finally implemented (in
terms of signal timing patterns) on the street network to regulate
the traffic flow in a desired fashion. Starting from raw data
gathering to control command implementation constitutes the traffic
control loop.

In this traffic control loop, the time lag between data gather-
ing and control commandlimplementation stems from three places.
First of all, time is needed to process and smooth the raw traffic
datalso that a meaningful traffic state can be obtained. Then, a
combutational time is needed to translate the traffic state into
control commands (e.g. timing pattern). Finally, a so-called tran-
sition period is needed to make a smooth transition from the current
signal timing pattern to the new timing pattern. This transition
period is necessary to eliminate the undersirable disruptions (and
thus potential traffic congestion) between timing pattern changes,
and to comply with safety considerations (e.g., minimum amber time,

minimum green interval). The time lag process from traffic



measurement to new timing pattern implementation is represented
schematically in Figure 2. This process usually takes 5 to 15 minutes,
In other words, it takes at least 5 to 15 minutes for a new timing
pattern to become effective. It is therefore desirable to predict
traffic volume this far into the future so that the timing pattern to
be used is based on the traffic volﬁmé which will exist at the time

the resulting timing pattern is in effect. The mathematical procedures
which are designed to make real-time, short-term traffic predictions
based on current and/or previous traffic measurements are the
"prediction algorithms".

2.1 MEASURES OF EFFECTIVENESS

The effectiveness of the prediction algorithms can be defined
as fhe ability of compensating the time lag as mentioned before, and
the ability of achieving prediction accuracy. In general, the time
lag also shows up as the prediction error (i.e. the inaccuracy in
prediction) and thus, in actual practice, the prediction error is
usually used as the major measure of effectiveness of prediction
algorithms.

For the purpose of numerical comparison, two aggregated measures
are usually used to define the predictor effectiveness (Reference 1).
They are the mean square error and the mean absolute error of predic-

tion which are defined as follows:

mean square error

= % I (measured value - predicted value)2
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mean absolute error
1

= ¢ |measured value - predicted value|
where N is the total number of predictions made. The mean square
error indicates the presence or absence of some frequent large errors
in prediction, and the mean absolute error gives an idea of the error
magnitude one might typically expect. In addiéion to the aggregated
measures, prediction error distribution is another measure which
is particularly useful in determining the bounds of the errors and
the biases.

2.2 IMPACTS ON REAL-TIME TRAFFIC CONTROL

The usefulness of the predictor in the traffic responsive control
system dépends heavily on the sensitivity of the computed timing
pattern with respect to the changes in traffic volume. If the traffic
control systems were to use rather long time average volume as the
basis for the timing pattern computation (i.e. the traffic fluctuations
were not used in timing pattern generation so that short term variations
were not considered), or if the traffic variations have only little
effect on the timing pattern computation, the prediction algorithms
and their prediction accuracy would have little value or consequence
on traffic control. On the other hand, if the timing pattern genera-
tion of the traffic control system is highly responsive to the
traffic variations, the prediction algorithms and their prediction
accuracy would have a major impact on the computed signal timing pattern
and thus the resulting traffic flow. Therefore, in actual applications,
not only the predicting accuracy but.also the associated impact of
this accuracy on the real-time traffic control have to be

considered.



3.0 CLASSIFICATION OF EXISTING ALGORITHMS

' Prediction algorithms may be classified into the following
categories:
o algorithms which require more than one measurement location
versus those which require the traffic measurement from a
singlé location, .
o algorithms which require historical traffic data as a

reference versus those which rely on current data only
o algorithms which use the linear combinations of traffic

measurements for prediction, versus those based on
non-linear combinations or parameters

o algorithms which are adaptive to the underlying process
(e.g., the parameters of the algorithm vary with traffic
deviations) versus those that are not.

3.1 MULTIPLE-LOCATION VERSUS SINGLE LOCATION MEASUREMENT

In an attempt to obtain more prediction accuracy, multiple
location measurements may be used. The additional measurement loca-
tions may be upstream from the point of the prediction and/or on
different traffic lanes. The practical implication of the multiple
measurement location requirement is more detectors, communica-
tions, and processing. These additions will increase the cost
of the traffic control system significantly. Previous studies
(Ref. 2, 3, 4) showed that conflicting results can be obtained on the
benefit to be derived from the additional measurements. More investi-
gation in this area is thus needed in order to determine under what
conditions and to what extent multiple location measurements will
provide increased benefits over single location measurements. The

10



advantage of multiple measurement locations can be examined using

the methods developed in Part II of this report.
3.2 HISTORICAL DATA VERSUS CURRENT DATA ONLY

Another consideration in prediction algorithm classification is
the historical data requirement. If the traffic flow has some
regulérity (or repeatability from day to day) the historical data
should be very helpful in predicting future traffic flow even on the
short term basis. This is because the next interval flow of the
historical pattern is probably the best information for compensating
the time lag between the predicted and the actual traffic flow.
However, the implementation of a prediction algorithm using historical
data would require a large data base. This historical data base
would require several stratifications (i.e., by detectors, by week
days, and by control intervals) and would thus be considerable.

This historical data base not only would occupy large core space but
also would require considerable effort to gather and to process before
a traffic control system could be set up. In addition, since the
historical data would be site specific, the prediction algorithm
would not be readily transferable to other sites.

3.3 LINEAR VERSUS NON-LINEAR

All the existing algorithms with implementation experience
which have been reviewed used the linear combination of residues
for traffic prediction. The residue is defined as either the dif-
ference between actual measured traffic flow and the historical
data, or the difference between the actual measured and the smoothed

traffic flow data.

11
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3.4 ADAPTIVE VERSUS NON-ADAPTIVE

One factor which determines a good predictor is its ability
to model the underlying process of interest (e.g., the traffic
flow in this case). If the characteristics of the process under
prediction change with time (as most of the traffic flow does),
the mathematical model of the process should also be changed in.
order to provide an accurate representation from which the predictions
can be obtained. Making the model automatically adapative to the
changing underlyiﬁg process would therefore seem to be a desirable
feature. This is discussed further in Sections 4.1.4 and 4.2.2 and
examined analytically with actual data in Part II of this

report.

3.5 SUPPLEMENTAL INPUTS TO THE PREDICTORS

The prediction algorithm classification delineation up
to this point assumed that the traffic status was measured by
detectors in the road. This assumption is a valid one because
most existing traffic predictors used the detector measurement
as the only input data. However, inputs from other sources may
have profound effect on the performance of the predictor (e.g.,
the a-priori knowledge of special events affecting traffic such
as ball games or adverse weather conditions).

An example of using supplemental information that could Be
beneficial in traffic prediction is the identification of speci-
fic vehicles. This information could be obtained from an auto-
matic vehicle identifier (AVI). The AVI (under development) is

a small passive device (either electronic or optical) which can

be installed on the vehicle. The AVI can carry information of

12



the vehicle such as the vehicle identification number. This
information can be picked-up by special wayside detectors while
the vehicle is passing by. The real-time information -- time,
location, and jdentification -- is transmitted to the control
center, through communication link, for processing.

The real-time AVI information would be very valuable in
supplementing the traffic status obtained from the regular system
detectors in predicting downstream future traffic demands and in
computing the traffic control commands. AVI is an advanced con-
cept that offers a potential for enhancing the effectiveness of

conventional traffic control techniques.

4.0 PREDICTION ALGORITHM REVIEW AND ASSESSMENT

| The prediction algorithms reviewed and described herein work
éxclusively with digital-computer-based traffic responsive control
syétems. This kind of control system is rather new. A major
research project using digital computer in urban traffic control
in the United States was initiated in May 1968 by the Bureau of
Public Roads (the predecessor of the Federal Highway Administration)
under the name of Urban Traffic Control Systems (UTCS) (Reference
5). The UTCS project provided the impetus for the evolution of
advanced traffic control strategies (which includes the prediction
methodologies). There are a number of prediction algorithms which
have been proposed and studied for urban traffic control. However,
the two most prominent algorithms are those which stemmed from the
UTCS control software, namely, the Second Generation and the Third
Generation Predictors. Both predictors are designed for single
location measurements. Both algorithms use the linear combination‘

13



of residues for prediction. The Second Generation Predictor
requires historical data (or pattern of the data) as the
reference. The Third Generation Predictor does not require
historical data and makes predictions based on current traffic

measurements only .

4.1 SECOND GENERATION UTCS PREDICTOR

The predictor for the Second Generation UTCS software pre-
dicts the next control interval (on the order of 5 to 15 minutes)
traffic volume at each detector location in real-time based on
the measurements from the same location only. The algorithm makes
use. of both smoothed historical traffic data and current traffic
volumé measuremeﬁts from the vehicle detector. The rationale is
that if the traffic volume of the day in question follows the
averaée historical pattern, the historical pattern would give good
predictions on volume changes in the near future. In addition, as
a supplement, the current measurements are used by the algorithm
to correct for the traffic deviations from the average historical
pattern.

4.1.1 Predictor Formulation

Mathematically, the Second Generation Predictor is defined by
the following sequence of computations. First, the residue (i.e.,
the difference) r(t) between the measured volume f(t) and the cor-

responding historical volume m(t) is computed as follows:

r(t) = £(t) - m(t) (@9)

14



This residue is then smoothed using an exponential filter. The
predicted value of r(t) is defined as c(t) by the following

smoothing process,

c(t) ac(t-1) + Br(t-1) (2)

where

c(0) 0, and

a+B =1, a>0and 8 >0

The difference, h(t), between the residue r(t) and the smoothed

residue c(t) is computed as
h(t) = r(t) - c(t) (3)

An empirical adjustment term d(t) is then computed as,
d(t) = vh(t-1) (4)

Finally, the predicted volume at time t is the sum of three

terms,
v(t) = m(t) + c(t) - d(¢) (5)

(where, all the terms in the equations are defined in the text
of this subsection).

In summary, the predicted volume is the average historical
pattern modified by the predicted residue between current and
historical traffic, and the result is further adjusted by a
fraction of the difference between the same residue and the

predicted one.
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For a given location, there are two parameters a and Yy to be
determined. The parameter B is constrained by B = 1 - a. The
parameter a is the smoothing coefficient for the exponential smooth-
ing process of the residues. For the UTCS system which was installed
in Washington, D.C., the value of o was tuned to 0.9. The parameter
Y is a constant obtained off-line. It is computed from representa-

tive volume data of the location in question by

n-1
(n-1)Z 1h(t)h(t-l)
t=
- 6
YT T2t hi(e) (©)
t=1

where n is the number of data points of h(t) of the representative
data set. For the UTCS system in Washington, D.C., 0.2 was used
for v.

Instead of storing the historical traffic pattern itself,
for each measurement location, the Fourier series approximation
of the historical traffic patterns are stored in the computer.
This is done by finding the coefficients (ao, ai's and bi's) of

the following Fourier series.

n o~
-

m(t) = a, + (aic052nit/N + bisinZnit/N) (7)

i
which best fits the historical data for thé location in question.
This curve fitting process is done off-line using representative
data for each location. In equation (7), parameter N is the total
number of time intervals in the representative data set (e.g., if
15 minute intervals are used, the data for a 24-hour day will

consist of 96 intervals), and parameter k is a user input parameter

-,
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which determines the fidelity of the Fourier series approximation.
It is usually the result of a tradeoff between the accuracy of the
Hourier series for representing a time varying function and the
storage space and computational effort one is willing to pay. 1In
general, for more rapidly varying functions, higher values of k
should be used. The upper bound k is N/2. Numbers from six to
twenty have been used for k in past applicationms.

4.1.2 Discussions

The following subsections discuss the Second Generation UTCS
Predictor. The discussions consist of some qualitative evaluations
of the algorithm based on analytic reasoning, and some potential
improvements to the algorithm. The discussions do not represent
final recommendations for algorithm modification. The validity of
the evaluation and the amount of improvements can only be verified
numerically using real data.
4,1.2.1 Historical Data Storage Considerationsj

The historical data used in the Second Generation UTCS Predic-
tor is approximated by a Fourier series. One of the reasons that
the Fourier series was originally selected in the algorithm for
historical data representation was probably for achieving memory
space savings in the computer. Instead of storing the historical
pattern itself, the Fourier series representation of the pattern in
terms of a set of Fourier coefficients is stored in the memory.
These coefficients generally occupy less memory space than that of
the volume pattern and thus offer some memory space savings. How-
ever, in order to accurately represent the time fluctuations of the
traffic volume pattern, high harmonics were needed in the series
which result in a large number of coefficients. Thus, the memory

17
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spuce savings by using Fourier series approximation was not as
much as was originally anticipated.

The Fourier series representation may have other undesirable
characteristics in terms of computational requirement. Once the
historical pattern is stored in Fourier series form, the real-time
computations required for retrzeving the historical pattern are
an order of magnitude more than the remaining computations in the
predictor algorithm. Even though sine and cosine computations may
be unified for all detectors, for each location of interest and
for each control interval, there are many multiplications and sine
and cosine computations involved to compute thc historical volume
m(t). Each of the many measurement locations in the system
requires a prediction and the retrieval of the historical pattern.
The involved computation that is required in the retrieval process
using Fourier series represents a considerable added burden to compu-
tational requirement.

Furthermore, it is well established that traffic control and
traffic pattern changes are mutually interactive. Once a timing
pattern (i.e., of the traffic control signals) change is made in
the traffic control system, the traffic pattern (e.g., traffic
volume profile) will change accordingly as a result of the new
signal timing pattern. Therefore, the historical traffic pattern
should be updated for signal timing pattern optimization. If the
Fourier series is used for traffic pattern representation, real-time

updating of historical traffic pattern means real-time updating

18



of the lourier cooffliclents. Illowever, as previously mentioned the
Fourier coefficients estimation process is also time (CPU time)
consuming, and perhaps for real-time operation. Therefore, for
real-time traffic control system design, careful tradeoff between
memory space savings and computational time savings should be
done before reaching the final Qecision on the type of predicgion
algorithm to be implemented.

Another consideration in historical pattern representation
is the filtering of historical data. As any curve fitting pro-
cess, Fourier series representation has the effect of filterihg
out the interval-to-interval fluctuations of the historical traf-
fic pattern. However, it is uncertain whether this kind of
filtering is necessary or advantageous. Since the historical
paﬁtern in the Second Generation Predictor is designed for pre-
serving the traffic pattern for prediction, the fluctuations
may be important in short term predictions. Furthermore, the
historical pattern itself is the result of a filtering process.
Each point on the historical pattern is an average of the data
over many days, and thus, the day-to-day variations have been
filtered out.
4,1.2.2 Prediction Structure:

By some mathematical manipulations, the basic structure of
the Second Generation UTCS Predictor can be deduced. From equation

(2), by successive substitutions, the variable c(t) can be

written as follows:
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K-1
c(t) =afc(t-K) + (1-a)z oX S 1lr(t-kes) (8)

S=0

The constant K is the number of intervals that the predictor has
been in operation since the latest start of the system (e.g., the

starting time of a working day). .Again from equation (2):
c(t-1) = gle(t)-(1-a)r(t-1)]
With simple manipulations, it can be proved that

aK-S-Z

c(t-1) = of let-x) + (1-a) r(t-K+S) (9)

nm =

-2
=0

Define 6(t) as the deviation (difference) between the predicted and

the historical volumes at time t, then,

§(t) = v(t) - m(t)

c(t) - d(t)

c(t) - yvh(t-1)

c(t) - yv[r(t-1) - c(t-1)] (10)

Substituting equations (8) and (9) into equation (10), one has,

s(t) = o Tary)c(t-k)

K-2

+ (1-0) (a+y)z of"5°2
S=0

r(t-K+S) (11)

+ (l-a-y)r(t-1)
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If the predictor has been initiated for a considerable time (i.e.,
for a large K), because a is less than one, the first term of
equation (11), aK'l(a-Y)c(t-K), is negligible. Thus, 6(t) can
be approximated as,
5(t) = (l—a)(a+Y)§-ZaK'S-2r(t-K+S)
S=0 (12)
+ (1-a-v)r(t-1)

Note that, since o and y are constants, the right hand side of
equation (12) is a linear combination of all the previous residues
r(t-1), r(t-2),..., r(t-K) between measured and the historical
volumes. In other words, the prediction on volume deviations, by
~ the Second Generation Predictor, are based on only the linear
combination of previous residues between measured and historical
volumes. Whether the linear combination of residues is the best

methods for volume prcdictions can only be determined numerically

using actual field data.
4,1.2.3 Implementing an Adaptive Feature:

From equation (5) - the basic equation for the Second Genera-
tion Predictor - it is seen that, since m(t) is the known historical
volume and d(t) is an empirical correction term, predicting v(t)
is essentially the same as the determination of c(t). From equation
(2), c(t) is determined by an exponential smoothing process. If
the smoothing parameter a is made adaptive, better smoothing can
be obtained such that the output of the adaptive smoothing filter

tracks the underlying process more closely.
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In other words, an improvement may be obtained from the Second
Generation Predictor by simply making the parameter o in equation

(2) adaptive. That is,
c(t) = a(t-1)c(t-1) + [1-a(t-1)]r(t-1) (13)

It is emphasized that this impro&ément is desirable, because the
Second Generation UTCS Predictor has been showing the best per-
formance so far.

The Trigg and Leach method (Reference 6) could be used to

determine the parameter a(t). With this method
a(t) = £(1 - & (14)

where f is a constant and 0 < f < 1, Q(t) is the smoothed forecast
error and A(t) is the smoothed mean absolute deviation, both compu-
ted at the end of period t. The smoothed error is computed accor-

ding to

Q(t) = ¢Q(t-1) + (1-4)h(t) (15)

A(t) = ¢A(t-1) + (1-¢)|h(t)]| (16)

where h(t) = r(t) - c(t) is an error term as defined in the pre-
vious Section and ¢ is a smoothing constant such that 0 < ¢ < 1.

The term %%%% is called the smoothed error tracking signal.
It is noted that, from equations (15) and (16), the following

condition,

0 5 |]Q(t)| s A(t)
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is always true, and thus the smoothed error tracking signal always
lies in the interval (-1, +1).

If the forecasting system as defined in equation (13) is
performing adequately, the value of the smoothed forecast error
Q(t) will fluctuate between positive and negative values around
zero (while A(t) is always greafef than zero and greater than
|Q(t)]). As a consequence, the value of smoothed tracking signal
will be small, near zero, and the forecasting system in "in control."
If the underlying form of the time series r(t) changes, the fore-
casting system will eventually begin to generate large errors and
the tracking signal will move towards either plus or minus unity.
That is, the forecasting system is '"out of control." The Trigg and
Leach method decreases the smoothing constant a(t) when the track-
ing signal indicates an out-of-control condition thus giving more
weight to the recent data and allowing the system to more rapidly
track the new signal. When the system has stabilized, however, the
value of the smoothing constant is returned to its normal value
(i.e., f) automatically.

It is noted that the Trigg and Leach method is not proposed
as a stand alone algorithm for traffic prediction. Rather, it is
a potential improvement on both the Second and the Third Generation
UTCS Prediction algorithms.

4.2 THIRD GENERATION UTCS PREDICTOR

The predictor for the Third Generation UTCS software predicts
the traffic volume two control intervals into the future. (Two
control intervals of lead time are required by the Third Generation
UTCS software.) Like the Second Generation predictor, the
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Generation Predictor also predicts the volume at each

location in real time based on measurements from the same location.

However, it is different from the Second Generation Predictor in
that the prediction process relies solely on current-day measure-
ments (no historical traffic pattern is required for prediction).
The Third Generation Predictor operates as follows.

For each location of interest, the vehicle detector measure-
ments are exponentially smoothed. The predicted value of the
traffic volume at that location is the sum of the most recent

smoothed value and the residue (i.e., the difference between

smoothed and un-smoothed values) which is extrapolated to the pre-

diction time. (Refer to equagigns (19) and (20) as to how the
extrapolation was done.) The extrapolating coefficient is deter-
mined from representative data for the location in question and
also is a function of how far in the future the prediction is to
be made.

The rationale for the Third Generation Predictor was to
develop a methodology that did not depehd on historical data. The
development of such a predictor was considered desirable for the
following reasons(3):

o A large data base is required for the historical data.
This data base consumes computer storage space and must
be updated periodically off-line.

o Traffic volume can vary substantially depending on
various external (with respect to the algorithm) factors

(e.g., weather conditions, special events, developments
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in other modes of transportation, and even the traffic
control change itself).

o An analysis conducted early in the UTCS project using
"simulated" traffic data indicated that utilizing

historical data was not always necessary to achieve

good prediction.

o The predictor algorithm would be more practical due to
its transferability to other systems.

o There is a general concensus amongst traffic engineers
that a highly responsive control software (the Third
Generation control software) should have a predictor
that did not rely on historical data.

4.2.1 Predictor Formulation

Mathematically, the Third Generation Predictor is defined by
the following sequence of computations. First, the current day
traffic measurements are smoothed to obtain the up-to-the-moment

trend of the traffic volume.
0, (1) = BNy (i-1) + (1-B)vy (d) (17)

where vk(i) = traffic measurement at station k (i.e., the

traffic detector) at current time interval i,

ﬁk(i) = the exponentially smoothed measurement at station k
up to time interval i,
B = smoothing constant.

The residue yk(i) is next computed as the difference between the

measured and the smoothed values.
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Yk(i) = Vk(i) - ﬁk(i) (18)

An extrapolation is used, in the original Third Generation UTCS
Predictor, to predict the estimated residue j intervals in the
future. (Recall that the residue is defined as the difference

between smoothed and un-smoothed traffic measurements),
Yk(i"'j) = “jyk(i) (19)

where o5 is the extrapolation coefficient. This coefficient is
obtained off-line, using a set of '"representative data', by the

following equation:
N-j
(N-1)I "y, (8)y; (S+3) (20)
S=1
aj = N
(N-1-5)F_ vy (S)yy(S)

where N is the number of sample points of the representative
data.
An extrapolation is also performed on ﬁk(i) to estimate the

smoothed volume j intervals in the future as follows:
i (i*3) = 8y + a,j (21)

The variables a; and a, are computed in either one of the following

two ways:
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(1) The variables a and a, are determined such that the forecast
fi, (i+j) is the linear extrapolation of the last two values. That
k

is
a; = ﬁk(i-l), and
ay = [f3(1)-0, (i-1)], or
(2) The ﬂk(i+j) is selected as the last value. That is,
a; = ﬁk(i), apd
a, =0

In the final software which was installed in Washington, D.C.,

the second method was used to determine ﬁk(i+j), that is
ﬁk(i"’j) = ﬁk(i) (22)

Finally, the predicted volume j intervals in the future (i.e.,

the quantity of interest) is determined as,
0 (i+3) = 9, (i+j)+0, (i+)) (23)

The component ﬁk(i+j) can be interpreted as the smoothed coarse
prediction of the traffic j intervals in the future, and the 9k(i+j)
term as a fine adjustment of the prediction to account for the

residues.
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This form of the third generation predictor is discussed
further in Part II of this report where the connection with
optimal '"ARIMA" predictors is noted.

4.2.2 Discussion

In the Third Generation Predictor, the prediction is done by
extrapolation. The extrapolation coefficient “j is obtained off-
line using "representative' data. The implicit assumption is that
there is a norm of the traffic pattern which can be reproduced
according to a 'representative' data set. It is interesting to
note that this assumption is in conflict with the idea of '"highly
responsive control software" (i.e., the Third Generation control
software) for which the predictor was designed. Aside from this
conflict, it is still reasonable to ask--to what degree is the
assumption valid? In other words, how much benefit (in terms of
algorithm performance) could be obtained if the process for
computing aj were made in real-time (i.e., computing aj using

current data)?

The on-line computation of aj could be done by a simple modi-

fication to equation (20) as follows:

-3
(N-1)Z  yp(s)y, (5+))
a . S“l;)N (24)
(N-3-1)2_  ¥(5) ¥y (S)

S=1-N

where N is the number of the latest residue data to be used for the
computation, j is the number of intervals in the future which the

predictions will be made, and the current time interval is
28



denoted as interval O. Note that the coefficient aj is now a
time varying function which is adaptive to the latest trend of
the traffic deviations.

Compared to the original Third Generation Predictor, addi-
tional real-time computation is needed for parameter “j' In addi-
tion, more storage space is needed to save the N latest residues
for each location. However, the number N can be constrained by
the user of the'aigorithm and it is usually a small number, which
puts a bound on both'yhe storage and CPU time expenditures.
Furthermore, a recursion formula can be derived to replace equa-
tion (24) which will make the aj computation very efficient.

, In the Third Generation Predictor, exponential smoothing is
used to filter the volume measurements (equation 17).. The smooth-
ing constant B can be made adaptive by the Trigg and Leach method.
(See Section 4.1.2.3) With this modifi;ation on parameter B and
the on-line computation of aj (equation 24), the new Third Genera-
tion Predictor would be fully adaptive. The application of the
Trigg and Leach method to the Third Generation Predictor is evalu-

ated with actual data in Part II of this report.

4.3 GENERAL ASSESSMENT ON THE UTCS PREDICTOR

Based on the literature, the review and assessment identified
two basic types of predictors for traffic control, namely, the
Second and Third Generation UTCS predictors. These predictors
are at the forefront of prediction methodology for urban traffic

control. During the development of advanced traffic control
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strategies for the UTCS Project, various prediction algorithms
wetre proposed and studied, but later dropped from consideration
during the evaluation phase. These algorithms are not included
in the Report.

The major difference between the Second and the Third Genera-
tion Predictors is that in the Third Generation Predictor, the
historical data is not required for prediction (although some off-
line determination of aj is required). This difference represents
a considerable computer storage savings for the Third Generation
Predictor. This difference also represents a considerable savings
in the effort involved in the collection and preparation of histor-
ical traffic data in the initial system set-up stage. Since the
Fourier series representation of historical data is used in the
Second Generation Predictor, eliminating the historical data
requirement also -represents a considerable savings in CPU time
during system operation.

It is noted that for the system which is warranted for
advanced traffic control, hundreds of system sensors (i.e. traffic
detectors) will be required (e.g., even the experimental UTCS
system in Washington, D.C. requires that many sensors). If the
Second Generation Predictor is used, for each sensor and each
time interval the Fourier series computations will be required.
The real-time computation involved may not be a small amount.
Also, because of the real-time considerations, for each sensor,
the whole day's historical traffic pattern has to be stored in

core, so that the roll-in and roll-out times can be eliminated for
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speedy real-time processing. (The historical traffic data for other
d&ys of the week is stored on disk). This represents a principal
bortion of the core requirement of the traffic control strategy.

In terms of Fhe'effectiveness of the predic;or53 based on
the limited test results available, gkefs. 1, 2), the Second
Generation Predictor worked consisfently better than the Third
Generation Predictor. This implies that the urban street traffic
pattern has considerable repeatability, so that the historical
volume data is very desirable even for short-term traffic predic-
tions. Therefore, a tradeoff between prediction accuracy and the
historical data requirement, or some simplification in data storage
and retrieval is in order.

The test results also showed that the predicted values of both
the Second and Third Generation Predictors track the trend of the
actual values of the volume measurements, and both algorithms made
some improvements in prediction compared to using the current
measurement as the predicted value. However, both predictors had
the problem of time-lagging between predicted values and the actual
measurements. This time-lag was especially obvious with the Third
Generation Predictor. Theoretically, historical patterns used in
the Second Generation Predictor should help to resolve the time-
lagging problem. However, because of the stochastic nature of
the traffic the time-lag was not fully compensated by the Second
Generation Predictor.

There are similarities between the Second and Third Genera-
tion Predictors. Both predictors use the residues between the
measured and smoothed volumes (See Section 4.1.1 and 4.2.1) for

predictions. 31
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. Another common tactor tor the Second and Third Generation
algorithms is that there is currently no on-line updating capa-
bility of the historical patterns and the parameters. lowever,
as explained in previous sections, on-line updating and real-
time adaptive parameter changes are worth considering. It is
noted that an off-line procedure for historical pattern updating
had been tried for the Second Generation Predictor in the UTCS
Project. This was done at the end of the day when the traffic
control system was inoperative. The traffic data which was recorded
during the day was processed and the historical traffic pattern up-
dated. This procedure represents a possible added storage require-
ment for the current-day traffic pattern, and extra effort of the
analyst.

Exponential smoothing was used in both the Second and Third
Generation Predictors. In the Third Generation Predictor the
exponential smoothing was used to determine the up-to-the-moment
estimate of traffic volume. In the Second Generation Predictor
the exponential smoothing was used as part of the prediction. The
exponential smoothing process is very efficient in real-time pro-
cessing and consumes minimal core storage. It thus seems to be
an effective method.

In summary, while a limited amount of data is available show-
ing that the UTCS predictors are capable of predicting the short
term traffic fluctuations, these predictors still may not represent
the ultimate in predicfion capability. In an attempt to identify
improved or promising techniques, Part II of this report continues
the investigation of prediction algorithms for urban traffic control.

More general -time series analysis methods are developed and their
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performance studied with actual data. The Second and Third

Bdheration predictors are shown to be special cases of the

general methods examined.
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1.0 INTRODUCTION

Traffic prediction algorithms have to date achieved a
success which seems neither entirely satisfactory nor so poor
that we expect to easily find improvements. Improvement is,
however, needed and it is desirable to know how accurately a
traffic volume predictor, such as the Second and Third Generation
UTCS predictors can perform.

Past efforts to find better predictors have explored
various suggestions; it is appropriate at this time to attempt

a systematic approach for finding an optimum traffic predictor.

Although it may not, in general, be possible to sharply
delimit the ultimate obtainable in a prediction problem, the
techniques which we have developed and used in this study, including
optimization of the class of ARIMA predictors given by Box and
Jenkins and of an extension of this class to probe the usefulness
of non-linear or adaptive variations, provide a step in that
direction.

The results, although obtained on a sample representing a
limited data base, suggest what may be expected in a more
general case.

2.0 BOX-JENKINS (Ref 1)

2.1 GENERALITY:

The Box-Jenkins approach to time series prediction appears to
be the most comprehensive approach to general time series predic-

tion. It encompasses in effect all possible linear single-channel
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predictors. The term "single-channel" refers to the fact that
the previous values of the time series being predicted are the
only real-time quantities used in making the prediction. Although
other techniques are available which are non-linear and, thus,
not covered by the Box-Jenkins approach, they tend to be ad hoc
procedures not tied together in a coherent program for time series
analysis. As a result, the Box Jenkins approach may be called
"state-of-the-art" for times series prediction and any attempt
to define the 1limits of predictive power achievable in almost
any context should contain a Box-Jenkins analysis or an evalua-
tion of the applicable Box Jenkins predictors.

As to the generality and acceptance of the Box-Jenkins
ﬁéthodology, we quote the first sentence of each paragraph in

Section 9-5 of Forecasting and Time Series Analysis by D.C.

Montgomery and L.A. Johnson (Ref 2) which section is entitled,
"A Critique of the Box-Jenkins Models'": 'The Box-Jenkins meth-
odology is a powerful approach to the solution of many forecast-
ing problems...not without several important limitations...[1l] In
general we require at least 50 and preferably 100 observations
to develop an acceptable Box-Jenkins model....[2] Another dis-
advantage of the Box-Jenkins models is that there is not, at
present, a convenient way to modify or update the estimates of
the model parameters as each new observation becomes available,
such as there is in direct smoothing....[3] A final drawback of
the Box-Jenkins models is the investment in time and other
resources to build a satisfactory model....Despite these short-

comings, the Box-Jenkins models are probably the most accurate
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class of forecasting modols availablo today..." (The bracketed
fitherals have been inserted.)

From the point of view of this study, the above quotes
amount almost to an unqualified recommendation of Box-Jenkins.
The possible shortcoming [2] identified by Montgomery and Johnson
and alluded to in Part I as appl}fng to the second and third gener-
ation predictors (which, as we shall later show, are special cases

of Box-Jenkins predictors) is lack of adaptation. Adaptation

amounts to a non-lincarity. Certain aspects of adaptive pre-
dictors were discussed in Part- I and the subjcct will be addressed
below. We shall address the question of how well Box-Jenkins
predictors work when augmented with adaptive terms.

There can be no general class of time series predictors,
and no analysis of predictors for specific time series (in this
case traffic volume counts) can determine the best predictors
or the ultimate performance obtainable, since there are always
6ther predictors that can be added to any class of predictors
and the optimum may be outside of the class cxamined. The
"augmented Box-Jenkins probe'" will, however, represent a limited
approach to this ideal.

Further, we shall show the form which the Box-Jenkins predictors
take. As we have noted, they form a very general class whose
essential restriction is that it consists only of linear predic-

tors. A linear predictor is of the form:
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Z () =L ap Z,_
t k=0 k "t-k

where 2t(2) is the predicted value of Ly, at time t. Thus 2t(£)
is called a predictor of "lagt". If & = 1, we have a "l-step
predictor"; if & = 2, a "2-step predictor'". A predictor of lag £,
i.e. an %-step predictor, predicfé the value, Zt+2’ of the time

series £ steps after the latest available value, 2 When 2 =1

£
we use the simplified notation, 2t+1’ for the 1-step predictor
it(l). As the equation shows, Et(l) (the predicted value) is formed

as a linear combination of 2oy 2 Zoogeee It is assumed that the

t-1°
coefficients akdrop off rapidly as the value of Zt-k which they
multiply are further removed from Zt (i.e. as k gets larger). The
generality and comprehensiveness of the class of linear predictors
is much greater than one would initially expect. It might be

pointed out that an analytic function is determined by all its

derivatives at a point and, therefore, all future values would be

determined by a (convergent) linear combination of past values.

2.2 SECOND GENERATION UTCS AND THIRD GENERATION UTCS PREDICTORS

AS BOX-JENKINS PREDICTORS

The second and tﬁird generation éfédictors of UTCS are
linear predictors, as may be readily verified. They are also
predictors of the Box-Jenkins (B-J) type. By this we mean that
they are of the class of B-J predictors for the so-called ARIMA

processes or models.
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ARIMA(p,d,q) stands for the general class of models for
time series considered by B-J. The values of p, d, and q (all
small integers) characterize a classification of these models.
The ARIMA(p,d,q) model is produced by passing (discrete) white
noise through a (discrete) linear filter with p poles and q zeroes
and subjecting the result to d summations, leading to the d'th
order non-stationarity. (See Appendix A for more details.) A
particularly simple and useful non-stationary model is obtained
when p=q=d=1 giving the ARIMA(1,1,1) model. 1In Section 5.4.6
(Ref 1) Box and Jenkins show the explicit form of the ARIMA(1,1,1)
predictor and it is easily seen to be equivalent to the UTCS third
generation predictor (Part I Sec. 4.2). In Appendix F, we provide
the algebraic details showing the equivalence. Reading Appendix F
should serve to fix the notions of certain aspects of notation
and the formalism of ARIMA filters especially as they relate to
UTCS predictors.

The UTCS second generation predictor (Part I, Sec. 4.1)
operates on the difference between the present traffic count at
a sensor and the average of past counts for the same time of day
at the same sensor. It operates on this difference in precisely
the same manner as the third generation predictor acts on the
traffic count itself. In this important respect the second
generation predictor also falls in the realm of ARIMA(1,1,1)
predictors. The details of this correspondence are shown in
Appendix F.

If the historical average is determined as an exponentially

smoothed moving average of past counts then, it turns out as shown
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in Appendix F that the second generation predictor is a predictor
fbr a seasonal multiplicative model [ARIMA(1,1,1) X (0,1,1)288] in
the classification of Box and Jenkins. (The subscript 288

results from the fact tpat there are 288 (5 min.) time periods

in one day). -

The historical average that is used for second generation
predictors and more general predictors based on historical data
can be determined in a number of ways. In Appendix E the merits
of various orders of Fourier smoothing of historical averages are
investigated. It is concluded that the most accurate predictions .
are based on very high orders of Fourier smoothing or on a
straight (unsmoothed) historical averages. As a consequence all
the historical predictors that are reported on outside of
Appendix E are based on straight (unsmoothed) historical averages.
See Appendix E for more details.

As the best current predictors already fall into the class
of ARIMA predictors this enables us to work outwards from this
starting point in an attempt to find still better predictors for
the traffic problem. Our general probe, whether it be of the
general B-J ARIMA predictors or of the boundaries of this class
in order to establish its sufficiency, will have the second and
third generation predictors as a starting point.

2.3 THE APPROACH TO OPTIMAL BOX-JENKINS PREDICTORS AND VARIATIONS

THEREON

Our approach to finding optimum or best predictors will be
based, as we have noted, on the Box-Jenkins class of predictors as

derived for the ARIMA processes. However, we use a somewhat
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different procedure for finding the best predictor in this class
from the one proposed by Box and Jenkins in their book. Their
approach is based on identifying and calibrating an ARIMA model
and then using the theoretically derived optimum predictor for
this model. Our approach is based on optimizing the coefficients
(or parameters) of the predictor'df the form of the optimum
predictor for any given classification of ARIMA process. The
classification in terms of p, d, and q, the three small integers
which determine the general ARIMA predictor form, is determined
by optimizing ARIMA predictors of more than one form.

How to set up a predictor of the proper form and how to
optimize its coefficients are discussed in Appendix A. Our
pfocedure optimizes the parameters of an arbitrary ARIMA predictor.

The optimization is of the performance of the predictor, as

measured by mean square error, on a sample of actual traffic

count data¥* (see'Appendix D for discussion of data).

The technique employs an efficient non-linear iterative
technique for finding a least mean square error predictor of a
specified ARIMA type (using a given sample data set of the time
series to be predicted) to determine the optimum coefficients.

The development in Appendix A is an important part of this study
and is recommended for the reader with mathematical interest in
the technique. The mathematical development is put in Appendix A
in order to make the rest of the report more accessible to readers

with less mathematical interests.

*The data was kindly furnished by Prof. John B. Kreer of Michigan
State University. Prof. Kreer used this data in a previous study
of trdffic predictor performanﬁi. (Ref. 3)



Incidentally the B-J "optimum'" ARIMA predictor is optimum
only in the sense that it would give a least mean square error
for an actual ARIMA process of the given type. Our "optimized"
predictor is of the same form but with coefficients calculated
to give a least mean square error on a specific data set. Once
one takes into account the method by which B-J estimates the para-
meters of the model from which the optimum predictor is derived,
the two methods would generally seem to be rather close in results.
If they were not close, it would seen that "optimized" predictors
would be preferable to "optimum" predictors if calculated on large
data sets since any discrepancy would presumably be due to model
failure.

If one has a very long segment of sample data as we do here,
the process of model identification or, equivalently, predictor
form identification is achieved by optimizing or fitting a few
ARIMA predictors, i.e. the predictors corresponding to a few
selected values of p, d, and q.

In general we have two criteria for choosing a predictor-

simplicity and performance. By the simplest we mean the predictor

with the fewest parameters (which means in turn, p, d, q, each

as small as possible) - the principle of parsimony. This conflicts
with the principle of best performance in that adding more para-
meters can always improve the performance of the optimized predictor.
The resolution is simply to choose the predictor with the fewest
coefficients which does not perform significantly worse than the

highest order (or least simple) predictor optimized.
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The question remains to determine when we have tested the
highest order predictor that need be tested. A traditional
regression analysis criterion is to stop increasing the complexity
when the improvement achieved becomes insignificant. As an
ARIMA(p,d,q) predictor can be made more complex by increasing
both p and q, our criterion will simply be that an ARIMA(p,d,q)
predictor has enough complexity when an optimal ARIMA
(p+1,d,q+1) predictor does not perform significantly better.

This also tests for d being increased by one since the ARIMA
(p+1,d,q+1) form includes ARIMA(p,d+1,q+1) and ARIMA(p,d+1,q)
as special cases.

Note that by adding two parameters at once we are giving a
Qery liberal opportunity for increased complexity to manifest an
improvement as the usual procedure is to add only one additional
parameter at a time and to inféstigate whether ;Bat parameter
produces a significant improvement all by itself. We test two
added parameters at once since we have discovered that (for traffic
prediction on this data) they do not produce a significant improve-
ment over ARIMA(1,1,1). Thus, this }act may as well be established

with one test which is at the same time quicker to perform and
more comprehensive. i
The relation between the present analysis and a traditional
Box-Jenkins analysis bears further elucidation.
Our analysis is based on the techniques outlined by B-J
in their book (Ref. 1). Our intent has been to simplify the
procedure (for our purposes) with no appreciable sacrifice in

validity of results.
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Our first observation is that the B-J predictors are of a
form suitable fof direct optimization. A technique fér optimiz-
ing such predictors is presented in Appendix A. The technique
is not wholly unlike that given by B-J for finding an optimal
estimate of the parameters for a fixed ARIMA process.

The chief difference between our analysis and that of B-J
seems to be not in the optimization (or fitting) technique but in
the method of finding the best model form--i.e. in identifying the
best values for p, d and q. We have short circuited the '"model
identification" stage of B-J which would be lengthy and somewhat
inconclusive in order to jump immediately to a '"base'" model (in
this case ARIMA(1,1,1) ) and then test its adequacy by "overfit-
ting." This whole procedure might well be considered to fit within
the program of model development as presented by B-J in Ref. 1--
certainly they do not expect every technique and procedure they
develop or present to be exercised in each application. Indeed
B-J seem to emphasize model estimation and diagnostic checking as
the key elements ensuring model adequacy. For us "model estima-
tion" equals "optimization" while our approach to diagnostic
checking is overfitting.

Overfitting is a pfimary method of diagnostic checking in
the program of B-J. Sample quotes from chapter 8 (Ref 1) on
""Model Diagnostic Checks'": 'No system of diagnostic checks can
ever be comprehensive, since it is always possible that char-
acteristics in the data of an unexpected kind could be over-

looked." Also see the last paragraph on p. 285 of Ref 1 (not
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reproduced herc hecausc of its length.) It should be added paren-
thetically that B-J are always concerned only with various ARIMA
models (those of higher order, in general), when they express
possible concerns about model inadequacy. They recommend over-
fitting as a means of seeing if a model is inadequate. Overfit-
ting, of course, means fitting an ARIMA model of higher order

than has been expected to be sufficient.

In short the mean square error criterion of the optimized
model is the ultimate basis for choosing the model. As opti-
mizing models is relatively simple, our technique of examining
what would amount to a gross overfit -of an ARIMA(1,1,1) vs. an
ARIMA(Z,I,Z) and then showing that that overfitted model is neg-
ligibly better in measufed performance might be expected to be an
adequate way to establish the simpler ARIMA(1,1,1) for the data
at hand.

This is analogous to the assumption that 5th and higher
degree terms of polynomial fit may be ignored if a second degree
polynomial is fit to some points and it is found that third and
fourth degree terms have negligible effect on the sum of the
square error. We use an example of two extra terms proven negli-
gible in order to correspond to the two extra parameters in
ARIMA(Z,I,Z). But the principle is the same as if only one extra
term were tested, (i.e., to infer the absence of higher order com-
plexity) because of the proven absencg of one or more intervening
orders of complexity. One certainly cannot prove, for example,
that the absence of third and fourth degree terms in a least squares
‘fit to some point precludes with absolute certainty a significant

fifth degreé fit. Nor can we even demonstrate that the fifth degree
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term is unlikely to be appreciable (if the third and fourth degree
terms in the fit are negligible) except with a-priori assumptions,
the exact nature of which would be interesting to develop but would
carry us outside our practical scope.

A good discussion of the mathematical implicatzbns of the
procedure sgems to be lacking in the literature in spite of its
place in common practice and its intuitive reasonableness.

Natrella's book Experimental Statistics (Ref. 7) (G.P.0.), note-

worthy for its emphasis on specifying sound accepted practice
(but containing very little explanation of the underlying theory),
may be quoted on this matter (the general problem of choosing
the degree for a least squares polynomial fit): (p. 6-19, Ref. 7)
"In using a polynomial as an approximation to some unknown func-
tion, or as an interpolation formula, the correct degree for the
polynomial is usually not known. The following procedure usually
is applied:
(a) Carry through the steps in fitting polynomials of 2nd,
3rd, 4th, Sth...degrees.
(b) If the reduction in the error sum of squares due to
fitting the kth degree is statistically significant
on the basis of the F - test whereas the similar test
for the (k+1) degree term is not, then the kth degree
polynomial is accepted as the best fitting polynomial."
This is eviden;iy the princiﬁie we are stating. As always (what-
ever the approach to model form selection) one must stop somewhere
and wherever one stops an assumption is inevitably involved.
The acceptance of ARIMA(2,1,2) as the highest order of com-

plexity to be entertained is inevitably arbitrary to an extent.
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Howe§er we give an important further justification for this
choice by predisclosing the result that in all tests with the
data at hand the improvement (in going from ARIMA(1,1,1) to
ARIMA(Z,I,Z))was consistently very small absolutely and rela-
tively as will be seen subsequently. Finally we note that higher
order ARIMA predictors (such as ARIMA(3,1,2) and ARIMA(2,1,3))
could haye been entertained (the:qﬁahtity of data available would
support such complexity) but the tests were considered unneces-
saril} extravagant.

3.0 A GENERAL PROBE FOR OPTIMAL TRAFFIC PREDICTORS; EXPERIMENTS

ON _OPTIMIZING ARIMA AND ADAPTIVE PREDICTORS

3.1 OPTIMIZING AND COMPARING PERFORMANCE OF ARIMA(1,1,1) AND

ARIMA(Z,I,Z) GENERAL CONSIDERATIONS:

As we have noted, an ARIMA(p,d,q) predictor is to be considered
sufficiently complex'or more simply "sufficient" if the best
ARIMA(p+1,d,q+1) predictor is not significantly better. The use
of the term "significantly better" will be made more precise when
we present the results. In some cases there may be statistical
significance to a certain difference between predictors but no
practical significance (i.e. no substantial difference).in the
results.

As we have indicated our modified Box-Jenkins analysis is
mostly boiled down to three simple tasks:

1. Construct the best performing ARIMA(1,1,1) (one-step)
predictor on a given sample of data.

2. Construct the best ARIMA(2,1,2) predictor on the same

sample. If we then show that the ARIMA(2,1,2) predictor does not
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perform significantly better, then we know that the Box-Jenkins
predictor of choice is ARIMA(1,1,1) or simpler. All simpler
predictors than ARIMA(1,1,1) are specinl cases of ARIMA(1,1,1)
(i.c. special ranges ol the cocfficients) therefore, the B-J
analysis is completed by:

3. A parametric study of the ARIMA(1,1,1) predictor.

It should be noted that this is not a standard Box-Jenkins
analysis but is useful for establishing the limits of predic-
tive power achievable in the traffic prediction problem. We
could extend our analysis if necessary to investigate more com-
plex ARIMA predictors.

" The Box-Jenkins analysis is closest to our optimization pro-
cedure when onc is dcaling with onec-step prediction--or stated
differently--working out the optimum onc step predictor results
in essentially an estimate of the Box-Jenkins ARIMA model. Box and

~Jenkins then deduce theoretically the 2-step predictor from the

model parameters. We can optimize 2-step predictors directly

by the methods given in Appendix A and we do so in certain cases,
but the majority of our optimization experiments are on one-step
predictors as this simplifies the job and in theory should lead
the way to optimum predictors of both the onc-step and two-step
type. Therc can be little doubt that any conclusions we establish
about one-stcp predictors carry over to two-step predictors.

As we have noted, the standard BQE:JenkinS analysis is not sensi-

tive to such a distinction.
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We now recall the form of the ARIMA(1,1,1) one-step predictor:

1)

Zesy = Myq + -M)Z,

2)

Z, = Oz't_l + (1-0) Z,

The intermediate quantity (time series) Zt used in this prediction
scheme is called the "exponentially weighted moving average'" or

more simply the "exponential moving average'" of the time series

Zt' 2t+1 is the predicted value of Zt+1 based on the observed
Yalues Zt’ Zt-l"zt-Z""etc' If we let Wt = Zt-Zt_1 and
wt = %;-Zt-l then equations (1) and (2) yield:
3) ~ - ~ .
Wepp = OWy - AW

as is readily shown.*
If 1, represents the traffic count at time t then, as shown

in Appendik E, 63)-or (1) and (2) are of the form of the UTCS third

generation predictor (0 replaces the B of Part I, Sec. 4.2, while

A réplaces B(I-aj) of that section). If Zt represents the

®
See discussion following equation F. 17 (Appendix F).
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difference between the current traffic count and the historical
average, then (1) and (2), or (3) are of the form of the UTCS
second generation predictor with A = l-a-y and © = y in terms of
the parameters o, y of Part I Sec. 4.1.

Henceforth (except where npted in Appendix A) Wt will denote

A

the first difference of Z,, that is W, =12.-Z, ,. W_ is the pre-

t t

dicted value of Wt at time t-1, thus ﬁt = Z,.-2

t “t-1.

Note incidentally that the ARIMA(1,1,1) two-step predictor as
derived by Box and Jenkins has the same form as the one-step pre-
dictor. Since both predictors are derived theoretically from the
same model, there is a relation between the two-step and one-step

coefficients. If we denote the one-step coefficients by 0 A

1 71

and the two-step coefficients by 0,5 Ay then B-J derive:

We, of course, may optimize either or both sets independently
depehding on the application. The theoretical relation has
apparently notvbeen noted in the traffic prediction literature.

Equation 3 forms the backbone of our analysis. The experi-
ments to follow will consist of adding various terms to the right-
hand side and then optimizing the coefficient of all terms simul-
taneously (using the methods of Appendix A).

The most important experiments are to delimit the predictive
power of the class of Box-Jenkins ARIMA predictors. The procedure
will be the same for both the historical data case and the non-
historical data case; the only difference will be that in the

50



historical data case (as with the Sccond (cneration predictor)

we perform the tests and experiments on the difference (or the
residual) obtained by subtracting the historical average from the
current count while in the non-historical case we work directly
with the traffic count data. The fundamental experiment consists
of optimizing equation (3) with respect to 6 and A . Then the

ARIMA(2.1.2) predictor as expressed thusly:

5) P - A A
Werp = 80 * W, ) + B W, + D40,

is optimized with respect to 3, 89 bo’ bl‘

We then compare the mean square error of the optimum pre-
dictor of the form (equation 3)(i.e., ARIMA(1,1,1)), with the mean
square error of the optimum predictor of the form (equation 5)
(i.e., ARIMA(2,1,2)).

3.2 EXPERIMENTS WITH ARIMA(2,1,2) VS. ARIMA(1,1,1)

Several experiments were run to determine if higher order
ARIMA predictors (i.e. with higher values of p, d, or q) offered
advantages over ARIMA(1,1,1). As we have noted, the precliminary
results had all indicated that no more complex predictor offcred
an advantage over the ARIMA(1,1,1) in either the historical or
the non-historical case. In the historical case the ARIMA predic-
tor acts on the residual after the historical average is subtracted
out.

The experiments each consisted of optimizing an ARIMA(2,1,2)
predictor on half of the available field data (the other half

was used to construct the historical average) or about 5240
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S5-minute intervals over 29 days for specific scnsors (i.e.
specific street locations). The program and a sample run are
given in Appendix B.

It was expected that the ARIMA(2,1,2) would likely show a
a greater advantage in the case of non-historical data since the
historical data predictors already perform much better and are
expected to react to unusual situations which might actually
call for a simpler predictor. We note that the ARIMA(2,1,2)
predictor, unlike the ARIMA(1,1,1) actually projects increasing
or decreasing trends (in general).

The results of the comparison of the optimum ARIMA(2,1,2)
ﬁredictor with the optimum ARIMA(1,1,1) predictor are shown in
Table 1. Column 1 gives the location (sensor, see Appendix D),

and Column 2 indicates whether the predictor is based on
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S,

TABLE 1. EXPERIMENTS COMPARING AkIMA(Z,l,Z) \'S. ARIMA(1,1,1)

1 2 3 4 5 6 7 8 9 10
$ Dif- RMS
Histor- RMS RMS ference Error
ical Error Error (2,1,2) (0,0,0)
‘ Average ARIMA ARIMA Vs (no
Sensor Used? a, a; bO b1 (2,1,2) (1,1,1) (1,1,1) change)
1 no -.408 .379 1.27 -.521 10.63 10.77 1.3 % 11.6
1 yes -.743 -.531 112 .592 8.92 8.94 0.18% ---
2 no -.467 .292 1.168 -.501 13.09 13.24 1.1 % 14.6
2 yes -.817 -.494 . 266 .54 11.15 11.15 0.0 % ---
3 no -.589 -.065 .596 -.121 11.31 11.39 0.7 % 13.2
3 yes -.823 -.423 .419 .417 10.29 10.37 0.8 % ---
4 no -.496 .09 .75 -.29 12.7 12.78 0.6%- 14.3
4 yes -.83 -.566 .243 .588 10.9 10.9 0.1 % ---



historical averagcs or not. Columns 3, 4, 5, and 6 gives the
values of ag, 2, bo, and b1 respectively in equation 5 for
the optimized ARIMA(2,1,2) predictor. Column 7 gives the

RMS (root over square) error for the corresponding ARIMA
(2,1,2) predictor. Column 8 gives the RMS error for the
optimized ARIMA(1,1,1) predictor (i.e., 2nd generation form

if historical data is used, 3rd generét1on form if historical
data is not uscd). Column 9 gives the percentage difference
between column 7 und column 8. C(Column 10 gives the RMS crror
for the simplest predictor, that is the '"non-predictor," which
simply bases its pfediction on the assumption that the traffic

count will stay the same in the next time interval (this can

be called the ARIMA(0,0,0) predictor).

Referring to Table 1 we note the following observations.

In each location (i.e. each sensor) the performance was in this

order (best to worst): 1'ARIMA(Z,I,Z) (historical), 2

3

*ARIMA(1,1,1)

*ARIMA(2,1,2) (non-historical), 4'ARIMA(1,1,1)
5.

(historical),
(non-historical), ARIMA(0,0,0). The biggest improvement is in
going from ARIMA(0,0,0) to ARIMA(1,1,1) (non-historical) i.c. in
going from a zcro change ('"non-predictor'") predictor to a UTCS
;third generation type. The secondmlgrgest chggge 1s for p3551ng
from no use of historical averages to use of historical averages
(i.e. between ARIMA(2,1,2) (non-historical) to ARIMA(1,1,1)

(historical)) In contrast it is seen that the passage from

ARIMA(1,1,1) to ARIMA(2,1,2) (whlch gives rise to the pcrccnt
difference in column 9) in no case yields more than a 1.3% improve-
ment in RMS error. This occurred at sensor 1 for thc non-
historical case. 'The improvement in passing (rom ARIMA(1,1,1) to
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ARIMA(2,1,2) was substantially less in the historical case than
in the non-historical case except at sensor 3 which showed the
greatest improvement, 0.8%, for pasgage'from ARIMA(1,1,1) to
ARIMA(2,1,2) in the historical case and an essentially equal
improvement in the non-historical case. Although the statistical
significance for small differencés'using this method have not
been determined,‘it is doubtful whether any of these improvements
in going from ARIMA(1,1,1) to ARIMA(2,1,2) is statistically
significant. There is surely no practical significance for an
improvement of less than 2% in the RMS error (which represents
less than 0.3% of the traffic count itself or less than 1

vehicle in 15 minutes).

We note in passing that if a°+al+b°+b1 = 1 there would be
evidence that the ARIMA(2,1,2) predictor could be replaced by an
ARIMA(1,2,2) predictor (to which it would be equivalent under
those circumstances) which would in turn suggest checking out
ARIMA(2,2,2). As the equality, a°+al+bo+b1 = 1, is seen not to
hold even approximately (in any of the cases in Table 1), we have
here no reason to entertain the possibility of a higher value of d
(i.e. ARIMA(1,2,2) or ARIMA(2,2,2)).

We further note that all evaluations in this section are
Based on exponential moving average evaluations of the RMS error
(all with time constants greater than 500 time units). The RMS
errors in each horizontal line in Table 1 are based on the same
moving average weights and are thus quite comparable. The reduc-
tion in comparability in passing from row to row in Table 1 is
slight (less than a few tenths of a pcrcent). ‘Tables 2-8 (to be
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ARIMA(2,1,2) was substantially less in the historical case than
in the non-historical case except at sensor 3 which showed the
greatest improvement, 0.8%, for paséage'from ARIMA(1,1,1) to
ARIMA(2,1,2) in the historical case and an essentially equal
improvement in the non-historical case. Although the statistical
significance for small differencés'using this method have not
been determined,'it is doubtful whether any of these improvements
in going from ARIMA(1,1,1) to ARIMA(2,1,2) is statistically
significant. There is surely no practical significance for an
improvement of less than 2% in the RMS error (which represents
less than 0.3% of the traffic count itself or less than 1

vehicle in 15 minutes).

We note in passing that if ao+a1+bo+b1 ~ 1 there would be
evidence that the ARIMA(2,1,2) predictor could be replaced by an
ARIMA(1,2,2) predictor (to which it would be equivalent under
those circumstances) which would in turn suggest checking out
ARIMA(2,2,2). As the equality, ao+al+bo+b1 = 1, is seen not to
hold even approximately (in any of the cases in Table 1), we have
here no reason to entertain the possibility of a higher value of d
(i.e. ARIMA(1,2,2) or ARIMA(2,2,2)).

We further note that all evaluations in this section are
Sased on exponential moving average evaluations of the RMS error
(all with time constants greater than 500 time units). The RMS
errors in each horizontal line in Table 1 are based on the same
moving average weights and are thus quite comparable. The reduc-
tion in comparability in passing from row to row in Tablec 1 is
slight (less than a few tenths of a percent). Tables 2-8 (to be
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introduced later) give RMS errors for ARIMA(1,1,1) predictors
based on straight averages over the data base rather than long
time constant exponential moving averages. There is consequently
a slight discrepancy between RMS errors in Table 1 compared to
Tables 2 - 6, but it is no more than 1.4% which appears to be
quite negligible. This discrepancy in any case does not

affect the comparison (here) of optimum ARIMA(2,1,2) pre-
dictors vs optimum ARIMA(1,1,1) predictors which comparisons

are based on identical exponentially weighted moving averages.
All the comparisons we have noted from Table 1 are unaffected
but we simply call attention to the negligible discrepancy in
the absolute minimum RMS error in the ARIMA(1,1,1) case
(historical and non-historical) between Table 1 and Tables

2 - 6 and the reason for this negligible discrepancy.

| To recapitulate: the results indicate that the improvement
(in going from ARIMA(1,1,1) to ARIMA(2,1,1)) is slight and
probably not statistically significant. The improvement was

never more than 1.3% in the root mean square and preliminary

estimates of the bias introduced by optimizing over the additional
parameters indicate that the improvement in most cases did not
exceed the bias. There was less improvement in the historical

case than in the non-historical case, but this is not conclu-

S{Qe since the improvement of ARIMA(2,1,2) over ARIMA(1,1,1) was
marginal and inconclusive in all cases, i.e. for all locations
tested, hoth historical and non-historical.

Therefore (concerning possible improvement in performance

using ARIMA(2,1,2) vs. ARIMA(1,1,1) historical or non-

historical) we conclude:
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1. The improvement is of no practical significance--i.e.
8 reduction of the error by at most .1 to .2 vehicles out of about
10 to 15 root mean square error vehicles.

2. There appeared to be no statistically significant

improvement.

3. Since the filter was more compléx, éﬁy gains could be

quickly lost due to "detuning" if traffic conditions changed
slightly.

All this tends to show that there is no advantage to using
more complex (higher order) ARIMA predictors over the simpler
ARIMA(1,1,1) predictors. This conclusion is, of course, based on
experience with a specific data set (see Appendix D). The general-
izability of the conclusion is difficult to assess. Further studies
of the type done here must be done on other data from other loca-
tions, before this matter is considered closed. However, there is
nothing in the results we obtained to suggest that the results
would be substantially different on other data.

3.3 IMPROVEMENTS THROUGH OPTIMALLY WEIGHTED NON-LINEAR ADAPTIVE

TERMS, METHOD AND EXPERIMENTS:

——

A similar set of experiments were run to see if non-linear
adaptive terms could be added to the ARIMA(1,1,1) predictor to
improve its performance. Since the non-historical casc recquires

*hat the predictor adapt to rather large and quickly devecloping
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changes, the experiments on adaptation were all carried out for
the non-historical case.

To show how the non-linearities were introduced, recall the
form of the ARIMA(1,1,1) one-step predictor:

A

6) W, = 0W - AW,

t-1

where We = 2¢ - Z¢1 and W, =2, -2

t t-1.

In practice, A is usually not extremely different from 6.
If A = 0 then the whole predictor reduces to the simple exponential
moving average, i.e.

A

7) 7, =7 = 0l

t = Lt t-1 ¥ (1-0)Z, 4

If we denote wt-wt by Gt

then Gt can be called the "overshoot" (or residual). It is the
amount by which the predicted value differs from the actual value
at time t.

For the case of the exponential moving average

8) W. = 06

t t-1

The non-linear terms by which we alter equation 3 can be of

various forms. Several types of non-linear terms were tried in pre-
liminary experiments. The only one which showed even a hint of

promise involved trying to adapt the coefficient of Gt. We followed
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up on this with two experiments to adapt the coefficient of Gt:
ih the manner of Trigg-Leach and with exponentially weigﬁted
least squares.

Accordingly setting:

~ ~

9) W, = OW__. - AW

t + YAS

t-1 t-1 Ct-1

where A is some function of the previous values of L and ﬁt (it
is not a constant, otherwise the last term would be redundant).
The Trigg-Leach predictor (Part I Sec. 4.1.2.3) is equivalent to

equation 9 with y = © = 1 and

I t

A= -| A(t

Therefore, we optimized (equation 9) (over 6,A,8) with A = - I t '
A(t

so that the Trigg Leach filter would be in the family of filters
optimized over.

Recall that:
Q(t) = pQ(t-1) + (1-p)6,

A(t) = pA(t) + (1-p) |6.] O<p<1

An experiment to determine the effects of optimizing a Trigg-
Leach type term appended to an ARIMA(1,1,1) predictor (i.e. equa-
tion 9 with A as just defined), using non-historical data, was
carried out on the data for one location only (sensor 4). The
result was an improvement in the root mean square error (over that
for a straight ARIMA(1,1,1) of slightly over 2.0%, i.e. just under
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0.3 cars per 5 minutes out of a root mean square error of 12.2
catrs per 5 minutes. This was better than the improvement obtained
going from ARIMA(1,1,1) to ARIMA(2,1,2) which was a reduction in
RMS error of less than 1%.

The most effective value of p (when using the predictor on
the data) was about .85 to .9. For p = .9 the coefficients in the
filter (equation 9) were 6 = .85, A = .78, § = 1.0. This is to
be compared to the optimized 0 and A for the ARIMA(1,1,1) predictor
for sensor 4 (non-historical): © = .43, A = ,495. Clearly, the
optimum predictor was closer to a straight Trigg-Leach smoother
and as we noted the Trigg-Leach did result in the lowest mean
square error (the reduction was larger than for a;y other
technique involving non-historical data only). This was a
éurprising result, but the RMS reduction of 2% (.3 vehicles
per S minute period) would not appear to be of practical
significance, although it was perhaps statistically significant.

Another similar type of adaptive term was tried. This
term was derived for an optimum adaptive term using exponentially

weighted least squares as follows:

A= r(_tl where
D(t)

r(t) = pr(t-1) + (1-p)6, &, 4

D(t) = pb(t-1) + (1-p)6, & (0>p>1)

t
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The basic idea is the same as with the Trigg-Leach approach:
r{t) is small compared to D(t) when Gt is uncorrelated with

s but approaches 1 (for p near 1) when 6t is highly correlated

t-1
to &, ;. Thus, if p = .6, A(t) measures the local correlation of

the "overshoots'" (or residuals), Gt,

high if the correlation is currently high. This seemed to be a

and weights the current Gt

very attractive type of adaptation term. However, when tried for
sensor 3, non-historical, with p = .6, it gave essentially no improve-
ment in the mean square error. When we went to sensor 2, however,
(sensors 1, 2 and 4 had more rapidly changing patterns than did
sensor 3) there was an improvement of the same order as achieved
with ARIMA(2,1,2) i.e. about 1.5% in the root mean square error.
Again, the improvement is probably not statistically significant
and certainly not worth the added complexity in practical terms.
Interestingly, the added term had a large effect on the optimum
coefficients even though the decrease in mean square error was
slight: Without the adaptation term (sensor 2, one-step, non-

historical) we obtained the following optimum values:
0 = .39, A = .46

Adding the adaptive term, we obtained:
@ = .54, X\ = .46, v = .54

The adaptive term was working but essentially no improvement was
achieved. This is similar to the result obtained with the Trigg-
Leach adaptive term. Our tentative conclusion based on these
limited experiments with adaptation is that adaptive tcrms have no
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significant predictive power to add to ARIMA(1,1,1) predictors
(non-historical). More experiments of this type could be perfbrmed
on data from locations expected to be considerably different from
the Toronto locations studied here. Based on the above results

it would, of course, be quite surprising if an adaptive predictor
outperformed even higher order ARIMA predictors.

The testing of optimized predictors with non-linear terms
included into the basic ARIMA(1,1,1) framework should be considered
~ secondary to the testing of optimized ARIMA(2,1,2) predictors.
From a theoretical point of view the ARIMA(2,1,2) predictors being
part of the B-J hierarchy are to be given more consideration. As
has just been seen the testing of ARIMA(2,1,2) predictors was much
more systematic and extensive on this project than was the testing
of non-linear adaptive predictors--consistent with the theoretical
position.

The results of the general probe of higher order ARIMA pre-
dictors and of adaptive predictors yielded one solid conclusion:
No more complex predictor outperformed the ARIMA(1,1,1) predictor
by more than 2% in these experiments. Other data might alter
this conclusion, however, the tentative conclusion is that
traffic count data does not lend itself to complicated prediction
processes, but is best predicted by simpler predictors. This
suggests that as a general rule traffic predictors should be
ARIMA(1,1,1) or simpler for both the historical data case
(working on the residuals after subtracting out the historical
mean pattern) and thec non-historical case. Complex filters

should be avoided because even if they apparently perform
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slightly better in a certain situation, they could be more
sensitive to changing conditions.

The property of retaining optimal or near optimal performance
under altered conditions is sometimes referred to as 'robustness"
in statistical parlance.* Traffic predictors are in general sur-
prisingly robust. We shall preseﬁt some quantitative results on
the robustness of the ARIMA(1,1,1) predictors below.

4.0 PARAMETRIC STUDY OF ARIMA(1,1,1) SECOND AND THIRD

GENERATION UTCS PREDICTORS

Having prescnted some cvidence that more complex B-J predic-
tors than ARIMA(1,1,1) (i.e. than the Second Generation UTCS
predictor for the historical data case or than the Third Generation
UTCS predictor for the non-historical case) are not warranted for
traffic prediction, we now examine more closely the ARIMA(1,1,1)
predictors. In so doing, it is desired to find the optimum'value
for the parameters 6 and A for various situations, to examine
the sensitivity of performance to variations in these parameters,
and to determine what practical simplifications and/or improvements
are possiblc in terms of:

l. Uniform parametor values for use in all cases.

2. Reduction of order of ARIMA predictor.

3. Increased responsiveness
--all with negligible degradation of performance below the best

obtainable with ARIMA(1,1,1) with optimized coefficients.

*This term has varied usage in statistical literature; the usual
context refers to the behavior  of certain statistics derived for
normal distributions as.they are used on non-normal data.
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Tubles 2, 3, 4 and 5 show tho values of 0 and A (sce cquations
1, 2, § 3) which optimize the one-step and two-step predictors
for both the historical and non-historical case. Thus Table 2
gives the optimum values of © and A for the (UTCS) :‘Second Genera-
tion 1-step predictor (for this data), Table 3 the optimum values
for a Second Generation two-step predictor, Table 4 the optimum
values for a Third Generation one-step predictor and Table 5 the
optimum values for a Third Generation two-step predictor. The
three error measures used in all four tables are: root
mean squarc, root mcan fourth power, and mean absolute valuc. (Sce
Table 2.) The root mean fourth error is more sensitive to
infrequent large errors while the mean abhsolute error is more
sensitive to frequent smaller errors, both as compared to the
basic root mean square measure.

Tables C-1 to C-4 Appendix C list the performance (as
evidenced by the same three error measures as used in Table >
2-5) of various ARIMA(1,1,1) predictors under various stated
conditions. The fact that a uniform set of coefficients (6,1)
can be used to obtain nearly optimum performance is highlighted
in Tables 6-9 which arc to be comparod with Tables 2-5 to see
how small the increase in root mean square error is in cach case--
i.e. for each sensor, one-step or two-steps, historical or non-
historical--when one uses a single set of coefficients for each
sensor. We have shown in Tables 6-9 the effect of using the
smallest optimum 6 and A for all four sensors. Thus, in com-
paring Table 2 and 6, we find that if the optimum values for
sensor 1 are used for sensor 4 (historical, onc-step) the root
mean square crror incrcases only from 10.89'to 11.02 and the
increcase is smaller for the othor sensors.
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Table 2
Historical Average
l-step

Optimum 6 and A

Sensor# 0 A (37)1/2 (EI)1/4 TET
1 .79 .74 8.90 13.47 6.385
2 .872 .81 11.07 15.35 8.535
3 .85 .80 10.40 15.31 7.935
4 .88 .84 10.89 16.50 8.268

and measures of prediction error,

— 1/2

(67) =root mean square (RMS) error

-z 1/4

(67) = fourth root of the mean of the fourth power of the
error

|81 =mean absolute value of error

These measures are decreasingly sensitive to persistent small
errors and increasingly sensitive to short lasting large errors as

one passes from

R 1/2 1/4
|6] to tgz) to (ET)
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Sensor#

SN

Sensor#

.81
.88
.84

088

. 26

.39

.57
.43

Table 3
Historical Average
2-step

Optimum 6 and A

\ | (;7)1/2
.779 9.18
.86 11.27
.88 10.55
.905 11.04

Table 4

Non-historical
l-step

Optimum 6 and A’

A (37)1/2
.39 10.73
.46 13.14
.59 11.37

.495 12.96

64

1/4
5%

14.33
15.74
15.88
16.78

1/4
R

16.59
18.20
16.44
18.60



. 325

Table 5
Non-historical
2-step

Optimum Values for 6 and A

oL@yt @Y
.36 12.55 19.43 8.706
.464 14.96 21.00 11.404
.52 14.29 20.70 10.801
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Sensor# 8
1 .77
2 .79
3 .79
4 .79
Sensor#
1
2
3
4

Table 6

Historical Average

1

-step

Other Smaller Values of 6 and A

.72
.74
.74
.74

1/2 1/4
(6% %)

8.91 13.49
11.15 15.39
10.45 15.30
11.02 16.60

A= .75

1/4
TR

13.42
15.43
15.37
16.66

6¢€

|81

6.395
8.622

1 7.984

8.378



Sensort#

L~ TR 7 B N

Sensor#

1

2
3
4

Sensor#

L - TR 7 B V)

.81
.81
.81

Table 7

Historical Average

Other Smaller Values of 6 and )\

<779
.779
.779

2-step

1/2
(8%

9.21
11.35
10.61
11.16

67

.75

5N
14. 25
15.79
15.96

16.97

.75

N
14.18
15.85
16.02

17.01

64’
14.18
15.75
15.92
16.90

/4

/4

|81
6.543
8.749
8.044
8.446

6.526
8.832
8.099
8.524



Seﬁsor#

& w»v N

Sensor#

.26
.26
.26

Table 8

Non-historical

l-step

Smaller Values of 6 and A

) R
.37 10.74 16.57
.39 13.20 18.22
.39 11.73 17.17
.39 12.88 18.75
Table 9
Non-historical
2-step
B = .2 ~A = .4
N o5
12.57 19.50
14.99 20.92
14.39 20.81

<77 68

8]

8;698
11.469
10.895



Tables 6-9 show the apparent extreme insensitivity
of the error to increasing or decreasing A and especially 0, sub-
stantially. One may observe not only the root mean square error
but also the mean absolute error and the root mean 4th error (the
fourth root of the mean of the fourth powers of the errors or
residuals).

The use of smaller than optimum values of © and A thercfore,
does not apparently decrease the mean performance substantially.
The decrease actually increases the robustness. Robustness is a
statistical term indicating the lack of sensitivity (i.e. criti-
calness) of performance to non-standard or unexpected conditions.
We use the term here to denote the property of a predictor to
perform well in a traffic situation which is somewhat different,
for any reason, from traffic sifaations considered in constructing
or tuning® the predictor. It can be seen that if tuning is
critical the predictor is not robust. This property is closely
related to but not identical with responsiveness. The fact
that lower values of © and A lead to increased robustness
can be seen from the fact that the sensitivity** of performance

to decreasing © and A is small. As we noted when a set of

values of O and A were selected which were essentially optimum

*By '"tuning" we mean calibration, that is the selection of specific
values of the parameters to fit the specific traffic situation.

**In this sense "sensitivity" refers to the criticalness of the
tuning. The tuning is sensitive if a slight change in conditions
requires different parameters for nearly optimal performance.
Thus in our present terminology '"sensitivity of tuning" = '"non-
robustness.'" Obviously '"sensitivity'" is not equivalent to
"responsiveness'", in effect more like the opposite will be the
case.
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at the location where the smallest optimum © and X were obtained,
these values of 0 and A resulted in predictors which were nearly
optimum at the other locations (the loss in performance below
optimal was always less that 4% and usually less than 1%). Thus,
by decreasing © and A we reach the optimum values for a wider
range of conditions with little sacrifice in performance from
conditions which are optimized by higher values of 0 and A.

Furthermore, it can be shown that the smaller values of
© and A léad to more responsive predictors--i.e., predictors
which respond more quickly to changing conditions. Thus,
for example, if the 0 and A for a predictor using historical data
could be reduced substantially without degrading mean performance,
the response of the predictor under completely atypical traffic
conditions could be nearly as good as a non-historical predictor.

For the non-historical case the optimum 0 and A vary widely
and in some cases (when 0 is very small) there is less sensitivity
to increasing rather than decreasing 6. In these situations
moderate values are to be recommended.

For the historical case a value of .9 has been recommended
(e.g. see Ref. 3,6) in the past for 0. This value might have
been chosen as optimum for certain locations, but as we have seen
it is best (in the historical case at least) to take as small a
value as possible for © as is consistent with near optimum perfor-
mance at all locations. This will often be near the optimum value
of 0 at the location where the optimum value is least. This means
that an average or median of © and A over various locations is not
recommended, rather the least near optimum values should be chosen.

We see that for these four locations in Toronto an average value
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for © of about .85 and for A of about .8 would have been chosen
but 6 = .79, A = .74 or © = .8, A = .75 would in all probability
be better for universal use at these locations or any with similar
conditions. By "universal use'" we refer to the use of a single
set of parameters at a large number of locations. By choosing a
single set which perform well at many locations we achieve several

ends:

1. Implementation is easier as the predictors do not have
to be tailored to each location
2. Individual determination of parameters at each location
is subject to error and the optimum values are such as
to determine predictors which are more sensitive in per-
formance to actual conditions than suboptimum universal
values
3. As conditions change over a long period of time the pre-
dictors would not degradé in performance so quickly
4, Responsiveness to atypical traffic patterns (special
events etc.) would be greater
Note that in the non-historical two-step case, 0 = .2, and
A = .4 gives very near optimum results in each instance. In the
past, values of © as high as .95 have been proposed for this case
(sce Ref. 3, also Ref. 2 of Part I). Such high values are not
warranted for this Toronto data.
We note incidentally the degree to which the theoretical
equation derived by Box and Jenkins to relate the optimum 1l-step
(ARIMA(l,l,l)) predictor to the optimum 2-step predictor is

either confirmed or contradicted by this data.
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We rocall the thecoretical rolation between the 0 and A for onc-
and two-stop predictors, namely cquation (4): 0, = 01,

A2= A1(1+01-A1). The agreement between the actual optimum two-step
coefficients and that derived by the theoretical formula from the
one-step coefficients appears to be satisfactory in the historical
case and unsatisfactory in the non-historical case. For examplé,
for the historical case one-steﬁ coefficients for sensor 1 we

have 6 = .79, and A = .774. The theoretical‘%ormula then gives
for the two-step case © = .79, A = ,777 compared to the actual
values 0 = .81, x = .779. Jlor thc same sensor non-historical 01 =
.26,‘A1 = .39/yield 62 = ,26, Az = ,34 (thcorectical) while the
actual values are 62 = ,09, AZ = ,36. However, if we consider the
extreme insensitivity of the root mean square error to the co-
efficients, the theoretically derived coefficients (for the two-
step case) 'are nearly as good as the actual optimum two-step
coefficients for both the historical and non-historical cases.

The better agreement with the theoretical B-J relations in the
historical data case is consistcent with the hypothesis that the
residuals aftor subtracting off historical average data is morce
like a true ARIMA(1,1,1) process than is the raw traffic count
data itself.

Finally we recall as noted in Part I that predictors based
on historical average data (Second Generation) have been shown to
perform consistently better than those not based on historical
data (Third Generation).. The data used in this study has already
been used by Kreer (Ref. 3) in his study which establishes this
point. As the values of © and A found here to be optimum are
different from those reported by Krecer we note that Tables 2, 3

4, 5 using the optimum point support these values of 0 § A very
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strongly. (We have already pointed out the same effect in

Table 1). The difference in RMS error between Second and Third
Generation predictors with optimized coefficients vary from 10%
to 20% for 1-step predictors and from 30% to 45% for 2-step pre-
dictors as may be seen from Tables 2 through 5. For example,
Table 2 shows that at sensor 1, using a historical based one-step
predictor, the RMS error was 8.§,’while using a non-historical
one-step predictor the RMS error was 10.73. The differences in
RMS error between Second and Third Generation (i.e., between
historical data and non-historical data) is thus far larger than
any differences in RMS error produced by going to higher order
ARIMA or adaptive predictors which as we noted were not of

practical significance.

5.0 Conclusions

A new technique has been developed to optimize ARIMA (Box
Jenkins (Ref. 1) predictors on data. The technique easily allows
a general form to be optimized so that the basic ARIMA form can be
augmented by non-linear adaptive terms and even by more general
terms such as terms involving concurrent time series (multichannel
data).

The technique has been applieﬁ to a sample of traffic count
data from Toronto, Canada large in extent (thousands of points) but
limited in scope (four locations).

The conclusions drawn from the analysis are that traffic
volume is hest predicted with very simple predictors when only
non-historical data, i.c., ncar-past values ol the trafflic

counts themselves, are being used, and with similar techniques

applied to the residuals after the historical average is subtractec
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off when historical data is used. In short, the Second and
Third Generation predictor forms were not found to be more

vffective than more complicated predictors.

This conclusion was arrived at by comparing the performance of
ARIMA(2,1,2) predictors optimized on the same data as ARIMA(1,1,1)
predictors. The ARIMA(2,1,2) predictor did not perform signi-
ficantly better than ARIMA(1,1,1) predictor: improvement in
performance observed at any sensor (historical or non-historical)

was 1.5% in the RMS error. Thus, it was cpncluded that

- . T —

higher order ARIMKWbredictors are not warranted on this data.

A more limited experiment indicated no substantial improvement
using non-linear adaptive terms (optimally combined with the
ARIMA(1,1,1) terms). '

Due to the limited nature of the data and the limited experi-
ments using adapation, the conclusion must be considered
tentative. However, the conclusion that the Second and Third
Generation UTCS predictors- (i.e., ARIMAfl,l,l)) can be mqgi
optimal or near optimal through the right ch;ice of coefficients
was persistent in all experiments and there is no evidence to
lead one to expect it to fail.

Consistent ;;sults can however strongly suggest practical
limitations as we have noted.

Further observations and recommendations about the details
of implementation of traffic predictors have been given. The need for

responsiveness and ''robustness'" as well as good mean performance

has been advised; this leads to an altered choice of paramenters
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selected. In general, smaller values of O and A are recommended
than are cited in previous literature on UTCS predictors. It
appears that smaller values are optimal in some cases while in
others the sacrifice in mean performance is negligible.

One of thé most important results of this study was the
development of a technique for optimizing ARIMA predictors and
ARIMA-type predictors containing non-ARIMA or generalized terms.

The mathematical details are given in Appendix A of this report.

In the traffic prediction context the largest potential for
this predictor optimization capability would appear to be in
the ability it affords to evaluate the enhancement capabilities
of the basic predictors with external information i.c., with
information derived from other real-time quantities, such as
traffic at other locations or with mean occupancy, which is
measured at the same sensors that measure the volume being

predicted.

——ean s P

A continuation of this study into the multichannel aspects of
traffic prediction (just alluded to) may be possible with presently
available data. Some data for the city of Indianapolis,
obtained from Prof. Kreer at the same time as the Tornoto data,
contains occupancy information. The Indianapolis data was uscd
in Kreer's study of Second and Third Generation traffic predictors,
but occupancy data has apparently not been included in traffic

volume predictors. Also, the Toronto data provides the possibility

75



of including data from sensors at multiple locations. The Toronto
and Indianapolis data would provide a start at such a wider inves-
tigation into traffic volume prediction using multiple sensor dati
and occupancy data.

Eventually the methods we have developed should be applied to
a wider variety of data in an attempt to further explore and define
optimum traffic predictors. Data from other locations should be
obtained to further explore the possibilities of higher order ARIMA
predictors as well as non-linear adaptive predictors which were
both tentatively ruled out as they did not substantially improve

predictive capability on this data.

The methods arc now available for relatively casy analyses.
Further application should be quick and inexpensive once data is

obtained.

References

1. Time Series Analysis: Forecasting and Control, 2nd edition
(1976), by George E. P. Box and Gwilym M. Jenkins; Holden-
Day publisher, San Francisco.

2. Forecasting and Time Series Analysis by Douglas C. Montgomery
and Lynwood A. Johnson; McGraw I1ill, New York (1976).

3. A Comparison of Predictor Algorithms for Computerized Trafflic
Control Systems by John B. Kreer; Traffic Lngincering, April

1975.

76



The Analysis of Variance by Henry Scheffé; John Wiley and
Sons, Inc., New York (1959).

Applied Linear Statistical Models by John Neter and William
Wasserman; Richard D. Irwin, Inc., Illinois (1974).

Surface Street Traffic Control: 1980 and Beyond by

R. W. Kessman and H. Lum in Comﬁendium of Technical Papers,
47th Annual Meeting of Institute of Transportation Engineers,
Oct. 1977.

Cxperimental Statistics - National Bureau of Standards Hand-

book 91 (1963) by Mary G. Natrella (GPO).

77/78



APPENDIX A

PREDICTION OPTIMIZATION ALGORITHMS
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The Box-Jenkins ARIMA models are considered to yield the most
dccurate, sophisticated and comprehensive systematic analysis of
time series prediction currently available for general use. The
term "ARIMA" stands for '"AutoRegressive Integrated Moving Average."
To assume that a time series (such as a sequence of five minute
traffic counts) is modelled by an ARIMA process is to assume that
the development (in time) of the real time series proceeds as might
some true (hypothetical) ARIMA process. All the ARIMA processes
are generated by finite iterative linear transformations on a
sequence of uniform variance, normally distributed, uncorrelated
"random shocks." It is convenient to refer to the latter as time
sampled random noise. The reader is referred to Reference 1 for
a complete description of the ARIMA models and their application

but here we describe very briefly a few salient features.

The simplest finite explicit expression of the general
ARIMA(p,d,q) model is given by Equation 4.2.1 of Reference 1:

Z

Al) 2 a

t = et *9pealeop-a T 01%3¢-10 000 t-q* 3t
where Zt represents the modelled (ARIMA(p,d,q)) time series, and
a, represents the series of random shocks (discrete sampled white
noise), and Wy s 0y (k=1,p+d;2=1,q) represent constant multipliers
The Wy 's and el's are arbitrary subject to certain cons;raints --
both equality constraints and inequality constraints. The equality
constraints limit the number of independent parameters (degrees of
freedom) to p+q (p independent parameters determined by Wyseeespeg
and q independent paramcters dctermined by 61,...,Bq).

The equality restrictions on the w's are quite important and

represent a modelling of the "order of non-stationarity." This
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can be explicated at the expense of making the model implicit for
2 = = - -
Z,. Thus let W, = VZ, = Zo = i let V2, = VW, = W, Weq
Z, - ZZt_1 * 1.9 and in general let VdZt represent the dth dif-
. . d+1 d d
ference of Zt; in particular V Zt =V Zt -V Zt-l' In the Box-
Jenkins modelling it is assumed that even if Z, is non-stationary,

d

then V¢ Zt is stationary for some small integer value of d. Thus,

if one considers A2) Wt = VdZt rather than Zt itself, Wt will

be stationary and so it is modelled as an autoregressive moving

average process.

A3) Wt = ¢1’wt-1+’“+¢pwt-p'9’at-l'"'oqat-q+at

Equation A3 together with Equation A2 is equivalent to Equation Al.

The quantities a_ and 6y are the same between liquations Al and A3.

t
The wy determine the ¢k and vice versa when the order of differenc-

ing (d) is taken into account. Now ¢ and ¢k are subject only to

L -
inequality constraints ensuring stationarity and invertibility

(see Reference 1). Equation A3 is said to determine an ARMA(p,q)

process, Wt; while Zt having W_ as its d'th difference is called

t
an ARIMA(p,d,q) process.

Equation A3 for the ARMA process is evidently very close
in form to Equation Al for the ARIMA process. In fact, the form
of Equation A3 substituting p+d for p and Z for W would be exactly
that of Lquation Al. The difference is in the restrictions on W,

and ¢k . Consider for thc moment an ARMA(p,q) process Zg- Then:

AN) Z +¢ 7 -6_a

S S LTS RERRRA FUPEPAL LTS REEER P LT a,

According to Box-Jenkins, thc one step predictor Zt for such a

process is given by

AS)

E ¢1 £-1 +...+ Zt -p 1(Z t-l)""'eq(zt-q'zt-q)
Z ,Zt_z,...(i.e. on

where is the predicted value of Zt based on 2

81

t-1



all values of Z_up to T =t-1: hence it is called a one step
predictor since it only predicts one step ahead). Equation AS
follows from the rules given by Box-Jenkin's equations 5.1.18 and
5.1.22 (Reference 1) and the sequels. In particular, a is estimated
by 0 when t =t (or any other future time) and a, is estimated by
ZT- ET when t=t-1,t-2,t-3...(any present or past time). The net
effect of these rules (as applied here) is that the recursive
Equation A5 for the (on-step) predictor is obtained from A4 by
replacing a_ (for all t) by ZT-ET. A similar equation to AS could
be written down for an %-step predictor. 2t(2) for an arbitrary
ARIMA(p,d,q) process. However, the coefficients would be subject
to constraints or side conditions. This is a minor annoyance, but
we shall avoid dealing explicitly with it by limiting ourselves

at first to the form (AS), which also serves as the predictor for
W, =2,-12 for an ARIMA(p,1,q) process. (Incidentally from this

t t "t-1
point on in this Appendix and elsewhere throughout this report W

t
always refers to the first difference of Z . Earlier in this
Appendix and in Reference 1, W, is used to refer to arbitrary
differences of Zt') Thus our development will be explicitly in
terms of Zt’ where Z, will be predicted according to an optimal ‘
one-step predictor for an ARMA(p,q) process and so Z, will either
be the time series to be predicted (in our case the traffic counts
if we seek an ARMA(p,q) = ARIMA(p,0,q) predictor) or else Zt will
be the first difference of the time series to be predicted (if
we seek an ARIMA (p,1,q) predictor).

We now adopt a general notation to cover these two special

cases and in so doing cover a wider class with no additional
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encumbrances. To this end let VT denote what is to be predicted

at time t. Thus if we seek a one-step predictor for an ARIMA(p,n,q)
bprocess, VT would denote ZT+1. For a one-step predictor for an ARIMA
(p,1,q) process V,r would stand for W%+1 (where wt = Zt'zt-l)' For

an 2-step predictor for an ARIMA (p,0,q) process, VT could denote
Z..y» and so on. We denote the value of V. as predicted at time t
(when V. is not yet known) by 01 so that for a one-step ARIMA (p,1,q)
predictor, 01 represents ﬁ1+1’ etc. Now 01 is to be constructed as

a linear combination of quantities already known at time T:

L.

A6) T = »

where the Ck (k=1, ..., L) are constants and the )(k,.r are constructed

from QT-j (j >0) i.e., past values of VT and from quantities Yk,r

(k=1, ..., L) available at time t which do not depend (explicitly
at least) on the Vt_j, specifically:
Yk,T for k=1, ..., J

A7) Xk T ° { A :
’ Vt-k+j + Yk,r for k = J+1, ..., L

.

To fix the ideas; note that for the one-step ARIMA(p,0,q) predictor

of equation A5 we have (with T+1 t):
01 = 2'r+1’ J=p, L=p+q
“k * *x } for k=1, ..., J
Yk,r = Zr-k+l
Ckeg = gk } for k = J+1, ..., L
Yk,T = 7 ZT-k+J
and so
Xere ={ Zrokel for k =1, ..., J
2T-k+J Ze-xed for k = J+1, ..., L
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With this substitution equation A6 represents equation AS. It is
evident that equation A6 can represent much more general predictions
including even the case where some of the Yk,r are not linear in
the values of the time series being predicted (i.e., not previous
values of VT or linear combinations thereof) as in the general ARIMA
case, but are instead perhaps values of a completely separate time
series, or perhaps non-linear in the predicted series. Equations A6
and A7 will serve to represent as general a class of predictors as
we shall have occasion to use. They are general enough to represent
the general optimal ARIMA(p,d,q) one-step predictor. As noted, they
can represent more general multichannel situations. A simple
generalization would make them representative of the general ARIMA
(p,d,q) 2-step predictor, but the extra encumbrance in notation will
not be added as this feature is not to be used. We recall that B-J
fit only one model for predictors of all lags (i.e., 1l-step, 2-step,
etc.) and derive the predictors from the model. As we have demon-
strated, the one-step predictor corresponds directly to the model.
As a result, in the matter of the forms available for predictor fit,
the present formulation is currently more general than that of BﬁJ,_
Parenthetically it may be noted that the ARIMA(p,d,q) model
(which contains ARIMA(p'd'q), thre p'+d' = p, as a degenerate special
case) is produced by passing white noise through a filter with p poles

and q zeros. If the white noise is represented by %, then

Zt = szt-l + qut-l * I,

where szt-l represents a linear combintion of Z,_q and its past

‘values:
84



p

F 2 = L £.17 .
p t-l k=1 k t-k

Then the one-step predictor is

A A

Zy = Fpleoy * Fq(Zeoy - Zeop)

~

= (Fp + Fq)zt_1 - qut-l

which is a linear filter with q poles, i.e., the predictor has as
many poles as the model has zeros.

Proceeding with the general program of optimization of A6 with
respect to Ck we note:
oV L v

T _ + ¥ C'__'r-'+J
A9) -aq xk,‘t jedel j ,

In vector notation:

" T

Al10) VT = C KT
) ~ L-!J o
All) Vv ovV_ .
T =X + L C. T-
T Y T
Also note:
A L L'J A

s Y_ .+ I C. .V _.
A12)  V_ j§1CJ NS TM LS

which has all terms depending on V collected in the second sum.
This is of the form of a recursive discrete time filter with inputs

Yk, and poles determined by Cj+J’ j=1, L-J.
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We optimize the filter by constructing an crror function and

minimizing it with respect to C.

Let
t
_ . t-t .5 . 2
Al3) Et = (1-R) E R (VT VT)
=0
where 0<R«1
5E t . aV
Now ~ 7"t _ _ - t-1 _ T
5?; = -2(1 RLEJ& (Vr VT)FE;

. oE
Setting S'C'E = 0, we obtain

- oc- = B
A}4) ? Ak,J j X
where
A15) A, . = (1-R) ERUTX. X

K, j ook, T,T
A16) Bk = (I-R)TEOR [(VT-VT)FCE + VTXk,T]
In vector notation A = {A, j} B = {By}
9
and Al4 becomes
A17) Atg = Bt
Letting
: -

Al18) n =V X (vt-vt)ﬁf_

and letting
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-1

Al19) P = A i.e., AP =1
we have:

-1 _ -1 . T
A20) ET = R2¢-1+ (1 R)ETXT

A21) B_=RB__; *+ (1-R)n,

Equation Al7 shows clearly that C depends on t. Therefore, we denote
it by C.. However, V. was to be computed using constant C for all
. This requirement must be abandoned in order to use the current

value of C_ to update 2-1 and B. Therefore, we set:

g - T
A22) Vi = G

since C 1 is known when 0 must be computed to update C_. Now
e T -
following P.C. Young (Ref. 3, the goal here is rather different)
(A20) 1leads to:

T

P . X XP
1 . 1-R —t-1=t=——7-1
A23) P =7 P 4, - %
(A23) ¢ ™ R -1 R+(1-R)X'P_ X
“t—-1=1

or letting

Er = Bro1Xp, we get,
T
1-R 5151

Pra1 -~ T
R+ (1-R)X £

—-t-1

A24) P =

= -

and (Al4, A20-A23) yield

! ~
AZ5)  Cpo=Cpp * (I-RIEn, - (1-R)V.E X,
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or ~
A OV

T
A26) C. = Cr.p* (I-RIR(V.-V))pet

3V
Thus, to update C__, to C., calculate §C1 by equation (All) using

C for explicit appearances of C. Thus:

=7-1

30 L-J ov_ .
T - T-
AZ6) gr Xt L OB
Then calculate V. from equation A22, P, from equation A23, and
finally Qr from equation A26. (Note that Vr may not be available
until after time t, which merely means that CT cannot actually be

calculated until that time. This presents no problem.)

Now reconsider equation A26 (the reader may skip to the
aG continuation of the more
91 = 91_1 + (1'R)2¢(VT'VT)§€I practical discussion at the

bottom of page 92 if desired)
Let C - C 1 be denoted by &C
—Ir

=1 =1-
Note that
. aV
3_ (v -v12 = . V1T
3l (Vr Vr) Z(VT VT)BQ

and replace
-1
;%5 by A and 21 by 91 ,

(temporary replacements for the sake of freedom in the ensuing

discussion). Now we have:

A27)  6C_ = -AQ



91 will be assumed to be a positive definite matrix (as g;l is) and

A will be assumed to be a sufficiently small positive quantity (as

l%E is).

We shall now show that if Q¢ is slowly varying enough (which
surely can be provided if (1-R)/2 is actually smaller than A which
is the case if (1-R)/2 is very small and A=(1-R/2) and A is small
enough, then equation A27 ensures that C_ converges as T+=.
Multiplying equation A27 by

IGCT:Q

We get:

-1..T |
a28)  x9E7'Q;8C,
F AL

Let us assume that 91 is essentially unchanged over a time period

from T to T,. Now sum tT' between Ts and T4 and sum T between

T and T,

We get:
e, - ¢ e (€, - C)
A29) =Ty =Tz Ty =T, =T
T2
T?d 3 42
= (C. -C_ )= L (V. -V)
~T4 —Tz" 3C =1, T T

Now suppose that the sequence

VT; T =1,2,3,...,»

is the infinite repetition of a finite sequence of length Ty
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Thus ZT+TM = Zr'

(The discontinuity that this introduces at Zp A

M+1, ZTM+1, etc.,

can be eliminated as shown below or ignored if TM is large enough
as it is in the case of our data.) Under these circumstances of

recycling data

VT+nTM = VT(1+O(nATM)

where n is an integer. (The notation "O(U)" denotes an indefinite
quantity of order of magnitude U. If £ = O(U) and 6 > 0, then

lim gl*8 =0

vs0 O = 0.)

In the same vein we have:

A30)  &C.

Crent, = 69{(1+0(nATM))

Thus if T3 = 1, + nTM, Ty = T2 + nTM

we haver
as1) e - ¢ )T (C. - €. ) (1+0(nATy))
A -T2 —T1 T1 —T2 -T1 M
Ta Tz A 2
= (C, - &) 3C TETx(vT Vo)

If nATM is small enough the left hand side is obviously negative
(Q is positive definite). The right hand side is approximately

the difference in

T=T2 ~ 2
r (v_ -V)
=17, T T



induced by changing QT (everywhere) by the change in 91 going

Between T3 and T,.

Thus
T=T2 A2
an £ (V. - V.)"<0
T=T)
where An indicates the change induced by changing go by QT“ - CT3 and

where T4-T3 = T2-T; and T3-T; = nTM.

As a result: for A small enough,

'—-
T -T+TM A7

e_ = z (wv. - V.)
T T”T T T

decreases as T goes from T, to T1+Ty at least up to some point in
time 1, = t(A). If a point is reached were eT+mTM does not decrease
as m goes from m to m+l, then one of the approximations such as

equation A30 has broken down. This can only happen if ATMVTv or

aV_
ATM —3%— has become too large for some t'<t(A). Thus, either
~ BVT [ ] X A 6
ATMVT->6 or ATM_EC— >34 (6 > 0). Suppose VT > XT; then
1"=1+T,,/2 A
M 2 1 §2
TE=T-T /Z(VT" VT") > 7 XTTET

This is unbounded as A+0 contradicting the rcquirement that c.

always decrease up to 1 = t(A). Therefore, assume

AL
ATy

|3|
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Now equations All and Al2 show that V. and aVT/BC are outputs of

tecursive filters which become unstable together:

Vo = Bl * BV

T
oV, . aV_
3¢ = F3¥p * FoVo * Fosg

where Fl, FZ’ F3, F4 represent linear combinations of the given
quantitites with backwards shift i.e., linear filters wihout poles

(bounded) .

"t

~

1
VT = T'iz F].X'T

avT I ~

—3C TTFE(F3XT * FgV)

As a result 3V_/3C can become unbounded only as V_ becomes unbounded

or I/I-F2 becomes unstable. But in that case VT also becomes

unbounded. In order for 3V_/3C to become larger than r = 6/AT,

we must, therefore, have that VT becomes larger than r' and r'

goes to infinity as r does -- leading again to the same contradiction.
Thus if A26 is altered to QT = 91-1 + ZAET(VT - VT)aVT/BQ

where 2) replaces 1-R then Er converges providing A is small

and 1-R is considerably smaller.

Practically the algorithm runs thusly:
Initialize Eo to reasonable values.
Initialize P to K1 where K is a large number. Update P_

until reasonably converged by equation A23 (a quick process). Then
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update C_ by A26 and BT by A23 using the same R for both. The

value of R is allowed to change with Tt:

In the final values of 2;1 and B_ the contributions at time T

(which are xsz and n.r respectively) enter with the factor Ft T where
—T= - ’

t
F - (l-RT)T'E R_t

t, T T
t
~ - ]
log Ft,r log 6. T'ETGT
a a,+t
log Ft,r ~ log (a +T) - a log (32+T)

or

The factors with which the initial values of B;l and of B enter
into the final value is similarly
az+1)a1

£ = (a2+t

t,T

This is, therefore, approximately the weight of in Qt' If there

%
were no recycling and all new data were being presented then for
large T, th would have a relative variance going roughly as 1/t
from its true value. Therefore, it is reasonable to want Ft,t

to go as T+a, and therefore to take a1=2. If a1=1 then all contri-

butions to C. are weighted equally in the final result.
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This might be better for recycled data when convergence is
Véfy nearly complete, but to get quick convergence a, should be
considerably greater than 2, say a1=5, is used initially (az“’TM
is a good choice) and then eventually a,22 is used.

The criterion for convergence is that the small changes in

691 are not leading to a persistent change.

Thus form:
. A
I'T = RI'T_1 + gT 69¢ = RLr-l + (1-R)(VT-VT)§§7.
T
D, = IR T, )
d_=Rd_ . + 6CTP.6C = Rd_ . + (1-R)(V-V_)6CT Ve
T 1-1 = -1 = -1 /7=t 3C

We may recognize 3 cases for the statistical properties of GQT

as reflected in Dt/dr‘

1. If 91 has converged essentially to its true value but new
independent data is being fed in (no recycled data) then the

GQT's will be independent and the limiting expected value for
Dr/dr (when 1-R is very small) is 1/2. It will fluctuate a great
deal and one should wait for an especially small value to stop the
iteration.

2. If we are using recycled data then as QT converges, Dr/dr will
approach zero (for TM large). It will fluctuatec considerably

and a quite small value is best used as the stopping place.

3. IfGQTis largely biased, i.e., has a strong constant component
(even though 691 is absolutely small) as would occur if C, were

slowly but steadily drifting towards a substantially different
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value, then (when 1-R is very small) Dr/dr will become actually
much larger than 1.

From these considerations we see that, as we are dealing with
recycled data, we should not stop the iteration unless DT/dT is
small. DT/dT < .02 should be a minimum requirement when TM = 5000
‘as it does in this study. In general it would seem that Dt/dr <
I/JTQ should be required.

We mentioned earlier that the discontinuity introduced by

having Z1 follow ZT was not of much significance for us since
M
TM z 5000.

The sequence of values is Zl, ZZ’ Zs, Z

ke MO LI ST
Zysy oo ZZTM,Z]. The discontinuity which occurs between Zp and
M

Z1 is not only in ZT but in all its derivatives. All these dis-
continuities can be eliminated by using the infinite sequence:

Zl, Zz’ 23’ e e oy ZT ’ ZTM, ZZTM ind ZTM_l, ZZ

-2z ey

™M  Ty-2

. 22, + Z,,

3Z - 22

1’ T LI I ]

’
M-1

Let the value of this sequence be denoted by Sj’ i.e.:

- ZTM-I’ ..y etc.

S S = 22

T T

= Zl, S, =1
M+1 M

1 2 22
Let j = (2L+K)TM+J
where L 2 0, 0 < J < TM,

and K is either 0 or 1. It can be seen that for j >0 there is

just one way of representing j by this formula with J, K, L obeying
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these restrictions. The values of the sequence are determined

thus:
S = 2002y - 22y ¢ -1%z,
where
P J = jMod(T))
K = [(5-3)/T,IMod (2)
2L = (j-0)/Ty - K
1= (-1)0 + KTy,

Expressed in informal Fortran:
=0
DO 100

= l’m

J
L

DO 100 K ='1,2
J

DO 100 J = 1,Ty,
jo= el
I = (-1)**KAJ+KAT,
100 S(j) = 2%(L+K)*Z(T,)-2*L*z(1)

+ (-1)**K*Z (1)

If the trend from Z, to I, is first removed by letting
M

J-1

UE) = 2() - 2(1) - Ty, [2(Ty) - 2(1)] J = 1,1,

Then setting

5 = (-I)KU(I)

yields an Sj without a trend.
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This means of eliminating the discontinuity is in keeping
with the ARIMA formulation which is ihdifferent to the direction
of change. For a highly non-linear predictor which fits an
increasing trend as well as accounting for local dips (or peaks),
the lack of distinction between "up" and '"down'" could be a problem:
However, with the right formulation this would not be a problem and
the "double mirror" means of recycling can be used in the traffic
prediction context when the sample length is so short that the

discontinuities become a problem.
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APPENDIX B
SAMPLE RUN AND PROGRAM FOR
OPTIMIZING ARIMA PREDICTORS
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Annotation of sample run: |Ilistorical ARIMA(2,1,2) |-step

predictor for sensor 1.

1. 0,5240 - "0" means use historical data ("1" would mean non-

historical), '"5240" means read 5240 records (i.e. 5 minute
intervals) from the date file

. 100,100 - "100" means initialize K to 100 I (Appendix A)

MANDY - name of data file = first half of Toronto data
. 1 - use sensor 1

. Y2AVE - Read historical data from filc containing averages

over second half of Toronto data

6. 5239 - Use first §2§g records (from) MANDY as the traffic data

7. 2 - Print out first 2 records

8. .79,0,.79,0,0,0 - Initialize C1,0 to - .79, Cz’0 = 0, C:,”0 =
.79 etc. (Appendix A)

9. 9,1 - "9" is a control parameter - means standard run, "1"
means l-step predictor ("2" for 2-step or "3" for 3-step etc.
may be used)

10. 3,4 - means three points after data gap beforc predictor is

working normally, 4 points after data gap bhefore error

statistics are updated.
11-12. Two sets of 6,A for running two fixed second generation
predictors side by side with ARIMA(2,1,2) being optimized

by this program.
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134

14,

15,

164

17,

These ARIMA (1 1,1) are for comparison
2000,9 - Thls part of the run will iterate through 2000 p01nts.
(If 5239 were less than 2000 then when 5239 was reached the
program would go back to the beginning of the traffic data.)
The program will not work with the first 9 points on the data
file.

. 9‘1
2,1 - a, = 2 in 6T = 3

2*
meaning here (value 1 for all normal use)

(Appendix A.) '"1" has no important

40,2000 - a, = 2000; 40 determines a wild po1nt selector. If
square of the difference in two successive values of Z, exceeds
the mean square value by a factor of 40, the point is con-
sidered a wild point and treated the same as a data gap.
2,2-p=2a=2 |

This program has d=1 built in (a minor modification of the

program is'used when d=0 is desired). Thus, an ARIMA(2,1,2)

- predictor is to be optimized.

0,0 - A = 0x(1-R) therefore C. is not being updated on this
part of the run. When "1,1" is entered, C_ and P. are being

updated together.

18-19-20. Show mean square prediction errors (exponential moving

averages) for the two ARIMA(1l,1,1) predictors and the ARIMA(2,
1,2) predictor being optimized. 79.66555 is the value of the
latter. 124.6547 is the mean square error of the 'predictor"
which predicts that the next value will be the same as the

current value.
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21,

22,

23,
24,

This line gives Cl’ Cz, Cg, C4 at time t=8,000 (at the end of
this part of the run). (the equivalent of ao,al,bo,b1 of
Equation 5.

3ZT+C Z

+C 4°1-1

Zre1 = C12¢%Co20
This is the value of dr at Tt = 8000 (Appendix A)

2d
(E—%— also estimates the optimization bias for statistical
™M

significance).

This is the value of DT at T = 8000 (Appendix A).

These are the values of P o at t= 8000,

Note that in this case the mean square error for the ARIMA(1,
1,1) was 79.95 (it was previously optimized) and for the
ARIMA(2,1.2) it was 79.66. The improvement in this case was
much less than 1% going from ARIMA(1,1,1) to ARIMA(2,1,2)

As noted in Section 3.0 this improvement could be as high

as 3% at some sensors, yielding a 1.5% improvement in the RMS

error.
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~EX
LINK:

LOADING

ANNOTATED COMPUTER RUN OF PROGRAM
FOR OPTIMIZING PREDICTOR

.

[LNKXCT NLB EXECUTION]

0553137240

100, 100 dbqi)

1

Yef

‘.. '.‘.'E@
5233 © .

b=

swm

0.2880000E+02
0.75S714ZE+02
-.?79 ‘
T =0.7900000
eNeN__
0.0000000
) '
0.7900000

0.0000000
10.,0000000
' 0.0000000
——__ 0, 0000000

10

[
0.4014286E+02
0.5990000E+03

®

"NOTE: Underline indicates input ’

40
40

0.4142857E+0¢
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'0.5%541€67E+02



S @
S+4

. 3
2299.79 @

0.7900000
ﬂs.?4

U 2900000
E[lﬂflii

da.c000
=z (0
e JLIQON)

40, 00U000MN
L0

0000000

rog

-1.0000000

0. 0006000

ANNOTATED COMPUTER RUN OF PROGRAM

FOR OPTIMIZING PREDICTOR

4
0.7900000
0.7400000)

@

S0, Qounno

0. 0000000
o .a.
0.0000000.

0.1131€19E+0% " 0.4995720E+0¢
0.S084EE1E+08 =0, E7EHIITE+N]
0.49957C0E+02 0.491€134FE+02

=0.7900000

0, 0000000

=0.3495113SE+00) =0, 12557 14E+01]

0. 0000000E+UQ

8. 01907%0

- 0. 010598¢

=0, 0058060

ome. Z0.0113552 .

Q¢ AUNONNNE +00
47
0. 0105 SeE
0.4349¢c.c
0.5651?31
1-0.4553450

0.7900000

§3

-0. 0058020
0.5¢51731
0.7517é04
-0, Sé47e4e
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0. 0000000

1]

-0. 01153552
- 0. 4553450
-0.564724¢
0. 4868848



T a

IR |

Y'Y

2L .74
0.7900000.

WP, 75"

= 0, 7900000

S0, 9

<
-

Soun

e .
e SQO0

=

on
L ]

2!

Ny

S. onaungg
G, Qg
11

1, 0000000

[
=4.B000QoNn
0.1c22902E+03
0.7719829E+ e
0, TESSI7IE+OZ

-0, 7E362%:
o 2QCHSESEE+ 1]
0, VE7RITIE + 1)
11/

Ue DIINGTE

0. 00%25&1

=0.0091740

-0, 00Z0%se

.. .. - o cee a————

ANNOTATED COMPUTER RUN OF PROGRAM
FOR OPTIMIZING PREDICTOR

4
Q. 7400000
0.?§00000

&

1. 0000000
S00Q.- Q00NN

[
2000. 0000000

0.7719514E+02
0. 1980 00E + 02
. 770cE72E+02
=-0.5276476
-0, 1584 DUNE+OE
U, 161 e SvIE+0UN
104
We (10 385
0.1?31594.'
0.2%=1201
-0.1921154

, 0.1407914

166
=0. QUHITH0
0.23312111
0.3431113
-0.25418%3
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0.59322¢.8 °

0
=0, UOUNEEE
-0.1%31154
-0.25418%3

0.2324021¢

i e @ o e



ANNOTATED COMPUTER RUN OF PROGRAM

FOR OPTIMIZING PREDICTOR

Sel ‘
3
- 4 5
@, 7900000 A Y DO
079’.?6
] . ee00000 0., 7E0000N
SO0y S ‘e
Toon -]
Sl
41 2000
2. 0000004 1.000G0a00
40, Ooo 7000, QUaunan
o 191
=T 1.0000600 1. 0000
e ' e
=24 0000000

1.0000000

0.15c2SS5E+ 03

0.7762232E+0c 0.812SH00E+D]
0.7728594E+02 0. 772E03SE+0c
-0.7S0cevs T =0.55978&0

0.16S3543E+0].

6000. 00GO0Q00

0 77641 9SE+ 02

=0, SNNUNGNE+N1]

- 0e3 14145k 400
15%

‘0. 0129165 0. 0029251

0. 0029E%1 0.248525%
-0.009178% 0.316174¢
. =0, DOZEEET =l EETS34a1

0. 1SEOTEREE-GL
13

.1047144 . . 0.609287R
[} . : *
<207 c 0
-0.0091783 -0. 002E387
0.316174¢ -0.2675341
0.4485773 -0.3508445
-0.3508445 _ _ __0.31887e&  ____ . ___.
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TS
4,S
4
e 79,76,
0.79000u0

.?9’ -?? :
- 0.7900000
£000,9

go00n
&1 .,
40,8000
S

2 D

03, NI E3

1+1
' 1. 0000000
e
-1.Goanpon
1.0000000
0.124654VE+0>
M), 79UTI97E+ (2
Q0 0.79665SSE+02
. -0, 7424925,
. -0, 1E73NSOE+D]
0.2330735F 4010
, 19€
0.01255:1
0, 0027157
=0, 0029520
-0.002374¢
¢ Ksre

e e e S ——

ANNOTATED COMPUTER RUN OF PROGRAM

FOR OPTIMIZING PREDICTOR

5
0. 76060000
0.7700000

-

.-.l.ununuun
WAL, D

1. 0000000
e

7000, Q000000

0.79%51 04E+ Oc
0.1200000E+0S
0. 7956625E+0c
-0,53059449
=N, cTESTIIE+OYF
0,455 2%~
171
0. 0027teT
0.e540%77
0. 322594
-0.e801077

e e cm— —— -

.'

, 0.1124870
9%

=0. 002950
(e 3325902
1, 4735075

-0.3702793..

. - e ——- ..
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L
=0. 0023742
=0.es0107?

 ~0.3702733 Q)
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P e me e -
¢ .

PREDICTOR OPTIMIZING PROGRAM

L

« TYPE WNLE
COMMON/CNN/ETACISs 182 9 2EE (S« TICSs DC L (1
COMMON 7CMD/ ITME CSESSY s ISENCSESS» s KNe HIZ (300D » TUUs TULILIs I THS Jis
COMMOIH/CMI/RASs IJFs ICs ID
COMMON/CMA-AC10s 107 s C 102 sCACI0Y s ReRIs RE
COMMON/CME /X 10> s ZHA ZHE s 29 NF's NG's NT

ase

76

347

99
100

COMMON/CMC/SAs SEsSCe 219285239 TXs Al ACs AZs A4 ASs AE

EAY=0 .
ZHA=0.

SC=0.

ACCEPT 45 1ITs1¥
TYFE d4s1Ts1¥
JH=1T

KN=1¥

2=0

21=0.

ZRE=0,

Ze=0. .

ACCEFPT SsAlsAZ
AS=AC

FORMAT &1
FORMAT <&F

NT=10

ARA=100,

AGP=0.

EAE=0.

EAA=0,

RAS=1

CONTINUE

SE=0.

L0 347 IFP=1,200
HIZ CIFF> =0,
CALL TORIN

NT=7

DO 100 I=1sNT
ACCEPT 313sCAHCI
TYPE 313sCACID
XIr=0.
C»=CACD

DO 99 J=1,sNT
ETAC s =0,

ACls =0,
CONTINUE

ACls I>=A1
CONTINUE .
ID é6 1TS=1s20
HCCEPT 45 ISTs ISU
IFCIST.EQ. OO QD T0

- % .. .
*
.
.o,
o

47e

107
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 teew g
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coue-
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— c— i =

P e Sw— - ow tim m-— o
.

313

47¢&

468

PREDICTOR OPTIMIZING PROGRAM
FORMRT Q1P
ACCEPT 45 110s IE
TYPE 4510D0s 1E
ACCEPT SsAlsAe
TYPE SsAlsAE
ACCEPT SsAZA4
TYPE SsAZsA4
1CZ=0
ACCEPTAsITsIJF
TYPE 4+1Ts1JF
ACCEPT SsRyke
ACCEPT SsR3sFe
ACCEPT 4sNFs NG
TYPE SsFsR2 ‘
AE.=RE
TYPE SsRI9Re
ACCEPT SsHDAs HLE
AS=HIE
TYPE SsHIAsHDE
TYPE 4sMFs NG
NT=NF+NG
IFCIST.E@.€) NT=NT+1
NPG=4
HWPE=1DG
FesS=ke
RUW=FS
RZ=Re
REC=F
REeé=FRe
RCeE=1,.-Ré&
RCE=1.-F
ICE=2a
ICR=0
1Cs=0
ICT=0
ICU=1)

ZAF=0.
Ad4lM1=1,-A4 -
JTT=0

TYPE SsRCEsRTT

IFCIST.NE. 0> G0 TO 4é&
ACCEPT 45 1ITs ISV
TYPE 4sITs ITT
TYPE €s RCEsRC
CONTINUE
0 SS ITT=1s1T
JTT=J0TT+1
IFCITT.EQ. &0 TYPE Sske
RTT=JTT
rRe=HDA

_RCE=FC&~ (RTT+REEN

.0,
-
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*  PREDICTOR BPTIMIZING PROGRAM

RCE=RCEe (1. +ReSeRCE>- .
Ré6=R

RCé=RCE

ZAF=ZAFeAZ+ (1 . —A3) 22

IFCICU.LE.2+1SUy ZAF=Ze
ZAL=A4eZAF+H4MeZ ]

ZRE=ZAE®A1+(1.-A1)>eZc

IFCICU.LE.2+ISW ZARE=ZZ
ZAK=ZAEeAZ+ (1. -ACr ¢21
IF((Z2=21) 002, LT.ANASRLY GOTO7TSE
1CZ2=1CZ+1 '

ICu=n

CONTINUE

IFCICU.GT.IE> ACS=ACSeFE+RCEe (Z=ZAL) oo
IFCICU.GT.IE> AQA=AGAeRE+RCES (Z2-21)eec .
IFCICU.GT. 1E> ACP=FREOALF+RCES (Z=ZHIK ) o0
IFCICU.GT.S» EAR=EAEORE+RCE® (Z=-Z1~ZHA I ¢o
Dhie=0LD1

DDl= (=21 =-ZHR" .
IFCICU.GT. IEXEAW=EAeAZ+ (1, =AZI ¢AEZ (DIIDN >
IFCICU.GT. IEYEARY=EAYeRZ+ 1, ~HZ) eIl
IFCICU.GT. IE»EAR=EAA®FE+FCE e (Z=Z1=ZHF) o2
23=2¢e

2e=21

21=2

ID €5¢ JEJ=1,1SU

ZN=283 B

Z2SSC(JEI =21

21=2N1

COMTINUE

21=28SCISW

1Ce=1C1

1Ci=1C !

CALL ZGEN

ICE=ICE+IC

ICR=ICR+ICeC1-1C1>

I1CS=1Cs+1C

1CS=1CSelIC

ICT=ICT+ICS

ICC=1-1C

ICu=1CUu+ICC

ICu=ICue]ICC

IFCICU.LE. 1> &0 TO &S

XQ=21-2¢

KN =Z2HA

IFCICU.LE.NPGY XN =0,

DO 47 I=1sNT

XP=X (1) ™

X (1) =X6

XO=XP

L
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PREDICTOR OPTIMIZING' PROGRAM -

e

CONTINUE

IFCQST.EG.€» XC(NTO>= (ZI-ZE-ZHHJOHE . CEAY) 7EAL
IFCICU.LT.NFG>GD TO S

2=2-21

CALL PRELD

2=2+21 .

FORMAT <1Xs4F>

FORMAT (3Xs2E>

CONT INUE g

TYPE €sARQAs ACF

TYPE €sARSs X (2D

TYPE ésEAFMsERE .
TYPE 7sCC13eCC@)sC(EosC

DCC=0

DD S44 JBK=1sNT

D0 S44 JBEJ=1sN4T
DCC=DCC+DC CIEJIs ¢ACIENs JEKD ¢LIIC JEK D

TYPE &sZHHAs

TYFPEés LCSsICC

TYPE &7sICEs ICRs ICTs ICZ

TYPE 7o CCCACToa1=10 NT)-J‘lvNT)‘
FORMAT <&i5s a1

CONTINUE

STOF

ENL

SUEBFDUTINE TORIN
COMMON-CHI-PAZs IJFs ICs 1D

COMMON ~CHMD- ITHME(S2SS) s ISENCSESS) s KNs HIZ (C00» o TUUS TLILN. ITHS 12
INTEGER RAs EsCsDs

AHCCEPT 1 MANLDY

FORMAT CASH

CALL IFILE (lsMﬁHDY)

ACCEPT &+10

TYPE &5 10

1UU=1

AHCCEPT1sMINLIY

) QUIRIIES [

G0 TO (115125139145 1L

READCIYKs CITME (> s ISENCUs sAs EeCo i =10 K
60 TO 1S

READCIDKs CITMEXJ s As ISENCIs s EsCo Dis U=1 4 K140
G0 TO 1S

FEADC1DKy CITMECI) s Ar Es ISEN (D1 9 Co Dlp J=1 0 KD
G0 TO 1S

READCIY Ky CITME (U sHe Bs Co ISEM (s Tis U=l s KND
CONTINUE

REWIND 1

TYPE &sk .

ACCEPT & 1TA r
JYPE &51TH

\ . T 110
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~  PREDICTOR OPTIMIZING PROGRAM

.-

RACCEPT &»1U
TYPE 8 IU
DD 45 IKK=1,1IU
IK=1IKK+1JF
TYPE gsITNE(Ik)QISEH(Ik),D

CONTINUE

CALL IFILE(1sMINDY)

GO TO <(21se2re3924+s2S> IDN+JX

RERD (1> Ky CEs H1Z(J s Fs GHs Gs Hy' =19 2E:E>
GO TO &5
REﬁDkl)k,(EsF,Hléfl)sGH-G-H-J 1,288
60 TO 25

READC1DKs CEsFsGHIHIZ (I s G Hs J=1s2EED
G0 TO &S5

READNCIIKs CEsFsGHs G HIZ (U s Hs J=1s 2EE
CONTINUE

FORMAT A I

REWINL 1

TYFPE 10 sEsFsGoGHoHsHIZ C100>
FORMAT (2E>

FORMAT (31>

RETURN

END

SUBROUTINE Z2GEN
COMMON-CMI-RAZs IIFs ICs 1L

COMMON ZCHME- <10 e SHAs CHEs S NF s NT

COMMON ~CHD- ITME (SESS o ISENSSTTr o KNs HIZ (2002 s TUUs JULUS ITRs Ji

1C=1

Iuul=100u+1

IUL=1UU+1 ,

IFCJUU,.GT. ITA> TUU=1

IVA=ITME CIUU+IJF

IFCIVA.NE. IVULUGD TO 9¢&

Z=ISENCIJF+ILLS

2=2-H12 C1VFA>»

I1C=0 '
Iuvu=1Iva

RETURN

END

SUERDUTINE FRELD
COMMON-/CMC./ SFs SEs SCo 219283239 IXs Al s ASs AZs Ads ASs AE
COMMDN-CNN/ETA (129125 o 2535 (S s DCSo DT 1 O
COMMON/CME % (10 9 ZHFs SHEs Zs NF s NGs NT
COMMON/CMA/ACI0s 10 sCC1 M yCACIOIsRyREIRE
DIMENZION YO

ESG=0

DO €1 1I=1sNT

ETTsA I

D0 62 JJusirsNF ‘
ETT=ETT+REOC(N0+J')OETH(II,JJ)
ESP=ETH(II’JJJ

111 ' .
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PREDICTOR OPTIMIZING PROGRAM -

® ETACII» I =ESE

ESO=ESF

CONTINUE

ETACIIs 1) =ETT

CONTINLIE

RCE=1'. -K.

RCEE=RCE#AS

RF=1. -RCEE*RE

ANT=NT

D= ("

ZHN=(,

DD 30 I=1sNT
ZHN=ZHN+C (1) #X (1D

V(I =0,

DD 20 J=1sNT

WD =Y I +ACT s Jp % U
D=D+V (1> e 1>

RM=1. /F

RC=FMe 1. =F)/ (F+De 1. =F5 )
ZHA=ZHN

DES=0

ZHE=0,

I0 Si I=1sHT

DET=0

ZHE=ZHE+CA (17 X% (1>

DO 40 J=1sNT

ACTs Jy =RMeA  Ts J) —RCOY (1D oV (JD
DET=DET+ETA CJs 13>+ (Z-ZHN) #A (1 » J» ¢RCEE
IFCJ.GE.1> GO TD 40
ASA=ACTs J3 +A CJs 1)

ASF=. SeALA

ACTs J> =ASA

F s T =ASA .
CONTINLE
DEU=ETA 1+ 15 ¢ (C-ZHN) ®RCEE
DC CI>=IC ¢ 1) ¢RA+DEU
BES=DES+DELSLET

C (I>=C CI>+DET

CONTINUE

DCS=RASIICS+IES
FORMAT (1Xs SE>

RETURN

END
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TABLE C-1
Historical 1-Step

e
aTk ET(RUE aTki

n)( "\)l’l\(:nmmn)n_!n\n\nnnuo-u-o-u-.-o-o—o--ouo-t—o-n-.-uuu.uuu (O e R Y S Y

SCRT(RUE SO)

& ¢1817¢

..
2
=~

- NN
1oy Ja Ty
i ~g

A
Wie

. Meene

€. Sdo9ee
8.93%zce
£. 904968
£.57135¢

g SOUETSY

CLEPTETE

o s L0 0 GO0 FO O 0L @0 66X (04 €6 40110
e,

£LCEESLS
£, E6%181
2, 675511
£, 116671
&, 215908
11.22911€
11165423
11.17622¢€
11.179264
11.165065
11.83£649
11. 168063
11.137955
11.123974
11.123849
11.13012¢
11.1725231

ROE FES
e N7 TR
X

2.411671
c. 40346%
g, ZETEES
s SEBEG]
€. JBE37E
€. 35495
€. 408187
£, SRETEG
CoECEES
B STEIET
e
e STESHT

e JACOOT

€. 4OESEE
P & )
€. 30T88E
<. SEESEL
PRS0 TS |
Ee 414635
£, 454688
£. 3444159
2,332 75T
e 24ITEE
£, ASOEES
t. 934511
£. 633384
Sl 663447
635656
£, 853005
L.ede143
c.evd1ée
LonSeens
2.téls?l
2. TSI7SS
£.050578
<. 551085
2.€1251°7

14

s TS
12273935

1Z. 92261
RO 13D |

Sicrd
1Z. e0sefs
13689958
13.0881¢€4
17.61164S
15.585379
iZ.&5teas
13.85%ze41
14, 08351
14,2€82%0
13, 547 e
13.614¢6ec
13, TESTES
12.79€472
13.&9Eee7
14.144714
13,6353
13.7ite4a
13, 585592
13,2507
14, Ld. it
14, 51m8et
13. 733340
SR =r=s |

18, 29€7€E 1
la.61zcrs

1S5.472E3
15.457 317
1S.38337¢
1S. deerad
15,9465%%
15,.52017S
15..4351€5
15,358934%
15, 3E£0aAs
15.37123¢
15.587E%94

_15,96588€

8

gt=p=)= -d
TR i RAaKEER ]

s o 4o 4o Jo 00 20 Ba (e
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RO RMMRYMY RN MMM

YA A R AT R YA YA T AT AT AT AT AT RPN SRTAY A TR YA YATAYAYS

TABLE C-1
Historical 1-Step (Cont.)

&0 700 11.13877e f.e1e17S 18.41151% IR
«c7c0 .740 11, Q% 9t, R, Trevee 1S, SeSasd &7l
JE7ZR GO0 11.0e7561 T, EIVSEY 1S, 345 CTe B
. 672@ . ‘Cl E' 1 1 . Uét":'.:'ii e '.":"E‘("‘E' 1 ':'o 2:4:5: 1 C - | ":
£720 .E40 11, QESTED e DIR7EE 15, e l€es avls
e e 11, 106581 2 SO 15, 44550 iy
.£560 700 11. 14326 T.E1EESD 15, 45843
.8560 .74¢ +11.162683 L.ETEEEN 15. 35586
e JSe0 11.072594 £. 244761 iS.8
L5066 .E1¢ 11. 671518 G, 54272 15, 337e
LE508 (&40 11.074704 L5482 15. 383528 87158
.E500 LS00 11.1113¢Ce 5.S€295¢ 15.429E50 Sl
5806  .TEO 11. 1358544 E.€117¢e4 15.414571 srie
5860 .74 11.89742¢ &.57161€ 15.37153% svle
.8 .E0O0 11.BEEE37 £.52e5ce 1S.88%528 «7iz
E8Blk €10 $1.857254 €.534154 15.3561%% IR
.56060 ,.840 11.070%7¢ . &.53eve17 15.57457% <715
.8860 .S00 11. 188328 £.557141 15.45€56S S71E
g < I - 11.1€4670 f.EEESY S.ar3el1y ST &
9260 .74 11.1e767e £.3693€7 15.435251 S71s
$260 .cS06 11, 165847 g, SEBE34 18, 437545 ~r )%
.2eed  LE10 11.166104, &, 559425 12.442£55 47 1%
o I 1) 11. 115756 &, Selest 4713
JEEED JER0 11.155370 aris
sl LTOO J8.5123Ca Rt
LTIRE LTHG 10, S8EESS SR H
P I 5 o) 133, 47C05E 371z
g s BN § o) 10, 471557 71
.7S60 . &4 1€.38c431 il
LTS LS00 1€.S3226% <T1:
060,700 1€, 47é%aq SIRE
SREB JTd0 if, 4494145 L. 584377 <71
< B 1 1) 10.42¢e632 V. £899E7 SR
LG L E10 15.42€650 7. £580c0 3712
730D L340 18.434795 Ve SO8OZS 10 S8
.THOB SO0 1@.479697 . Sr@92! 15.5€c998 =713
8726 .70@ 16,437772 7. 298923 15.832%52 -7
.g7ee .740 10.42445¢6 [T ] 15.292585 avas
.Srekr (5006 1£.465811 V. H49334 15, JeEens arie
.8720 .tEl6G 19.4606374 7. 93EES T.3e5sa ST 1S
.£720 .&40 16.414355 7. 52477E 15, S&7dET IR H
8720 900 16.45€5c¢ 7. 948645 15. SS€Eo3 271
8560 .v00 16.452593 7. 993988 18.238e¢6 arls
8560 .74@ 1¢.41&127 7. 963452 15.24464¢6 ari1e
8560 .toe 16, 297598 V.534750 1S, eSS0 arig

£560 .81 16.397629 7.S3ec08 1S.3e111@ arlg
6560 .g40 16. 464767 7.929r4E 15.3r¢ees <71
5800 900 16.445798 7. 5qedsy 15.5490644 a7z
5800 .700° 10, 462606 g.00e41c 15.834454 4arie
.68006 .740 18. 430072 7o Fr1€E8 iS.24574% 27 1L
.6808  .E00 10.412690 Ve Rd83is1 15.314943 S71E
-8860 .Ele  1€.413473 7.544:8¢ 15, 23287 . S71E

[
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. £800

$59@
. £500
. 5800
.EE00
« e
.Seen
. Seoe
. Seed
. S2ee
.m

3&&&&&&&&1—&&&&&5&&&-&.‘ N N N N N N N N N N N R YA YA Y ATATA TR Y X)
o
SR (]
-\l
[0
[y

16.4221268

10.467711
16, 5e2e570
18. 506819
10.49%9442
16, Se2e4q7
10.51876@S
10, S7OESS
11.11614¢&
11.0701é6
11.C43088
11.042433
11.047092
11.086132
11.8622S0
11.017156
1e, %8207
10, 90048
1€, 985S0
11.01108¢
11, 0O0ESe
16.9459¢&1
10, SOSETS
10, 80c3eS
18. 9816
10.9192432
11.£1043¢
18.5€0199
16.917107
16.¢15721
16. 216691
106,9%ee1¢e
10, 99931¢
16, %4€398
10.96431%
16. 9667EC
10.£%66€1
12, 917874
11 15470
10, %€7667
1€, 928511
10, 925838
19, S2442¢
10.9515e1

TABLE C-1
Historical 1-Step (Cont.)

7.941063
7.954851
£, 051256

.-E"'egfc
C. 457149

€.4150114

T, ES7RT
S. 28675
8.285980
S.a06248
£.41864%

S.3783%

l.35C609C
<. 202
o e Uaf"‘
2, 277erS
TeET@265
g.&reste
€. 274055
£.331832
S.20262¢
£.zeetet
€.eg1tes
6.:9611(
.-- —58?-.'8
°t ‘1‘&9“
S.eTeret
SeEr1C 4
2. 267836
L. 78430
€. 282878
£.221759
E.cev4ve
G. 284586
£.281335
£.29504¢8

0 1

Bl

(L
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15.395¢&1¢c
15, 568448
15.2887<7
18.315574
15.411&41
1\.!.4-

iq.ull"c

1€, 6435220
12657116
16.719884
1€.,€50e7 7
16.c0314¢
16.5721¢1
€. 371791
12, 570016
1€.e52141
1€, ToNgee
1€6.53934e
16.561723
1€.500141
16, TO383E
16.54855¢&
16, T0647S
1€.545249%
1€, 507565
16.505%64
16, 569504
1€.554¢€5
1€..550¢ee
1€. 539534
1€, 502685
16.50115€
16, 5646018

1€.58030¢ -

1€.6155¢3
1€.5657S3
16, 535855
16.539595
16.5471C7
16.660c71
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. 460
.i“%

EETH
. 750
709
[ ] %e
.E6e
. S05
920
sl
i)
.£60
. 880
05
. 530
g

e
. TEl
< CEQ
. 05
<

LRR
-

Il-??
.CEB
LS80
o SO
L5260
. 750
e
.E60
. 6E0
. S0S
SS30
750
Nrda
lt.:“‘
. 228
. S90S
. $30
. 756
o 779
850
880
.$6%
.938
. 750
ks
580
. 526
« 505
. Q20

&, 189920
o, 165808
%, 212%¢
S, 2eE3%
9.e5e49%
R, e€150%
W, 185767
~. 181671
U, o972
a, 8ES271

2.215€83
S.252093
S EST4FE
S.2€5c1¢
. c6313
b.eeeclé
$.245788
$.c84533
G, So2ay
S, Seeree
S.c4c857
S.246382
., 2985325
%, 321091
9.353824
S. 352097
11.416594
11, 383596
11.356555
11.36083¢&
11,372432
11,300?€S
11,&75859
11.356849
11, 318665
11, 220874
11.330572
11.347048
11.356€616
11.3262€4
11.28968¢6
11.291¢€20
11, 300150
11.315457

1

D

ECRT(AVE €6

TABLE C-2
Historical 2-Step

RUE RRS
©.S14384
&, S00TOR
€.99%142
. Se2rs
£, 241202
£, Se4Ec
€. 505121
€. 3SOTER
G, OE3S
g AECEST
te 497266
€.516548
e, 500384
€. $5€641
. 477791
€.4€216%
6.951591
<. 565027
€. 507418
S, 455207
€.952027
Do 4UEYET
S. SQEEEND
€. 520158
€.522081
¢, Seeco4
6, 522832
6.528521
€.541477
€.55811¢
&.500546
§. 778814
§.752139
5. 753817
€.761473
€. 7r3ceé
§.772541
8.748624
$.7163688
£.7192506
&. 72481
8, 733€05
€. 7505492
€.7252€3
3. 692975
&.693003
8.€97609
. 8.7ee832
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13.281&88E7
19.679€7
13.45411:
19, SESECT
14,8847 e
14, 7SS
14.8849777
19.36841¢
19.563€%e
13, 63E543
13.7347a4
14.841:250
14, 216883
13.585254
13.€4311¢
19.7c11E7
14.8864:1
13939894
13.59425S
14.97 3155
14.7¢eerd
14,.845547
14.9e24E71
1. 666475
15,3660
19,.54763%
15, 883z22¢€
14.956412
15, BEEGGa
15.214¢c€1
15.8076E%
1S5.FE4EE:
16, 7E1467
15, TH425E
1581757
15,8560
15.7reede
15.754524
15. 746960
S.rSE07
15.786144%
15.812451
1S.vécel?
1S5.7372&%
15,7955
15.741561
15.7¢4a7¢
1S. 795172
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300 60 € G W 63 43 G 63 € £ ¢ PV FD RV MV MY MY RO Y Y R Y Y

P N N R R AR A AT AT A TR T AT AT AT ACAT VLY

i

. 8800
. 8806
. EE00

. 8660
. 9160
.9100
9160
9168

S1eq

11.342850
11.31e3%1
11.875564
11.2774g¢6
11.285%€9
11.301521
11.354632
11.385293
11.e94267
11,89771e
11.36521¢
11,3255€8&
10.€57€eS
16.624729
16.S7réceé
16, 57€.350
16.588536
16.59113¢8
18, 64256¢
16, £E6642S
16,55821¢
16,556154
10, 559244
10, S€2940
10.€3671C
10, 862329
16,55152¢
14, 549324
16.3552244
16,561777
18, ES2087
1€, egedly
16,E7C001
16.57423¢
10.579101
10, SS@4ee
16, 6593960
10.€71135
18.5386686
16.641239
16.€50349
10.€65%%6
11,233375
11.1943354
11.133833
11,1E8797
11, 125660
11.13717¢
11.2653%¢
11.1€4197
11.6964¢9

L 11.6%614

TABLE C-2
Histor}ga{rz-Step (Cont.)

8.7326%7
£, 767261
€. ErES40
§.677584
€.68867%
€.691654
&.73E6E?
€.v156éce
&. 68479
£, 585845
E.6S04ES
&.7a074¢

- 8, 684293

2. 855569
3.010165
$. 604849
£.0032e5
€.0071¢4
€. 073968
&.0445355
7. SOvESE
7. 993037
7. 991811
7. 996428
€.070605
§.040517
7.99405¢2
7. 890170
7. 90078
7. 005784
&, 082302
S.uS3res
&.012165
&. 0092c0o
£. 011390
8.617504
£.11724%
£, 092593
&. 058214
£.69572€3
&.06173%
€. 670314

£.456802

§.46515¢
&.415026
8.4129&4
£.411767
£.41997%
£.478530
&. 446507
£.28946¢%
&.582850
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18, 76O

15.744577
15.743e50
15. 757583
15.7€2€4¢9
15.816é4ee
15.801114
15,7685
15.7954%1
18.81e8%1¢2
1S.84e¢en
15.:818e¢
15. 956784
15.9488E7
15, 91€€22
15.922c40
15.538648
15.9651¢e
15, 953995,
15.91%467
15. &86534
15.898317
15. 67395
15. 930681
1S, $3ESTH
15.94047E7
1S5.&734€:2
1S. 87880
15.£8952¢&e
15.91521¢
18, 946458
15.61888%
15,897 758
1S5, 967357
15. Se7est
15, 9851€8.8
15.5562831
10.570S7S
15.9vse1v
15.58977¢
1€.617152
16.653ez1e
16,574221
1€.5e24%61
1€.c29877
1é.8156cc
16.814067
16.81655¢9
16.956924
1e.9033%4
16.802845
16.790927
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TABLE C-2
Historical 2-Step (Cont.)

£l .60 11.00933% g ITE391 le.7E31e7 3620
.cl1afp .56 11.0%4508 . SB17EE 1€, 82367 4620
LS00 L7006 11. 183999 S.déeeer 1g, S50gdd QZh
L N 11.141E4¢ £.42%06 36, &850S5 déct
I L P L) 11.668977 &, J65665 1€, 79GERS 46:0
L5450 L8380 11.851936 €. 35ee80 16.77717 d6c
L8408 . 5E0 11.@5918¢€ £.354610 16.7egetd 45cH
S4B L5506 11.8631€3 S 304456 1€., 7€ SGs asze
L2208 VSO 11.171316@ 5. 455327 16, 90586 “acl
JLEED LTV 11, 1&793¢ £. 426764 16, Seezes AN
LEEDD L EED 11.053947 &. 3535ee le. £G0S39 2eC
A 11.64€648¢ 8344391 ib. rE2t4at. d8er
LEEED  JEES 11.043214 8. 38508 1€. 7e0p1e 486
. .G800 530 11. 046675 5. 338842 16.772177 4ogE
«Sltd 70 11.182é73 &.9€5285 1, TiE44€2 SEch
SlEe LVPS 11,14473% &.436cc0 1€.52072% 4ge
.S1e@  .&60 11.crilce 8.371608& 1€.5374eé 4Ece
JHlEl: L E80 11.0648EC £, 32635 16.&271e9 $6co
JSled . S65 11. 063639 Go IOEUEO 1é.82121% 46ct
91686 930 11.0é8027 £, 357721 16.82307% 60
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TABLE C-3
Non-Historical 1-Step

S __ ALPHA RIIA SORI(AVE SQ) AVE ABS_ _6Yd RILAVE 4TH)___  PIS
1 02200 . <350 10743637 T.58645¢ 16.55666¢ 4T1
16,585048% 411

1 22200 «460 10.,7L3178 T.%56L359 l6.08¢320 471
1 2200 2495 10, 791361 N 'S X138 I 1 MU ¥ 7O -1 Y- X S Y § |
1 42200 L0630 11.002054_ . _. 1.722007_ . .. _.1T.ldo?0l . .. _ . __all
1 «2600 «350 10.74266% T 5049341 10.0el4le 471
1 226020 2392 10a12322¢ Le505303 164346092 47)
1 « 2600 0460 10.7%3510 715603046 l16.0681721 471
1 22600 454 10, 751192 14573181 16.25332¢ 471
1 «2600 « 599 10.946014 T.654204 17.026004 471
: 1.7012822 17.17h521 471

1 ..3600 «350 10.7€¢9054% T7.5917523 16615604 471
1 .3%00 _ ,390 12.761234 7.578025 16045505 411
1 3600 2495 10.,8226617 14583543 )be.8251]8 471
1 «3900 «590 10.576665% T7.665107 17.11C46¢ 471
1 « 3900 « €30 11.072324 7716675 17.2653%4 ___ 471
1 «4300 «350 10. 763224 T7.6094%6 16.0645194 471
«4300 +360 10.763104% 7,590295 1 6. 684070 401

1 04300 <460 10. 815787 " T.5306014 16.,795793 471
1 24300 2495 10.85}8d4 t 1600922 16,825727 410
1 24300 - 590 11.0145%16 T7.686020 17.173180 471
1 «4300 <630 11.1112¢1 1, 741656 17333428 411
1 «5700 «350 10.519155 7.695372 16.858203 471
700 Se83 5 t 207 1

1 «5700. «460 11.0087¢¢ Te715450 17.093943 471
1 .5700  .495 11.066100 7,743507 17,204374 571
1 «5700 «590 ll.209476 7.807593 17589310 471
_ P « 838793 A7.%48310 41}

1 + 6000 «350 10.965815 7.727082 16.9£4619b 471
1 6000 3,0  1C.99055¢  7.720683  °17.005385 a7l
1 «6000 «460 11.079122 T«7063844 17.195556 71
1 « 6000 2495 11l. 144657 7. 797249 17. 3167;) «1)
1 «6000 «590 11.391519 7935177 17.7320626 471
] 6000  .€30 11, 524461 8.013452 17.945331 __47)
2 «2200 «350 13,255406 10.222333 18.200664 471
2 «2200 «290 13.217507 10.190212 18,225413_ 471
2 «2200 ° <460 13.20:951 10175510 16. 214353 471
00 49 49 805)  _ _ _ _)8:262167 _ ______471

2 « 2200 «590 13.356830 10.282143 ’ 18.9306765 47
: 5 Qal4b903  18.570Q030.___.__ 411

2 «2600  .350 13.24155%5 10. 210658 18.271098 471
: azl6R79_ 471

2 « 2600 «460 13.179517 - 104155300 18.195342 ’ 471
2 L2500 4S5 0 13.194144 10,163910 L8e219212 L L4471
2 .2¢00 . .590 13.316815 10.2471¢d 16.403926 471

f 120



TABLE C-3
Non-Histgrica} 1-Step (Cont.)

-.630 13.404137 10.306724 _16,532416 _____..._57].
2 <3900 L350 13.222912 . 10194634 18.282943 4711
1 10.194%09 162221969 871
2 «3900 L4060 24142550 10.120093 18.204150 471%
2 3900 _ .445 13.159551 104109905 ..__18.227143._. . _._41)i
2 <3500 o550 13.251%43 10.178434 18.40074¢ 4711
839, 13.329306. . . 10.¢¢%520Y 194932617 471,
%__.3_9_0_0 =42 PESETT I A VY S P 1Ea3c3402 41
2 <4300 . .39 13.180441 10150409 18e 291 L0H 4.
2 2420Q Y Adaleld  lueldased . L L ldado4vdy U2 8 X
2 .‘!300 0‘095 130'5,(‘16 .o.llh'—:)l 136200434 47
. LIa2%6ued . _luall3ull_ . duswbdyyl0 .. . all:
2 <4300 .€30 13.233706 10.2221t3 18.5004%2 471
2 25700 2390 12,303740 10,249308__  __ 10,473556 . ______ 411
2 .5700 .390 13.2¢9068 10.215062 16.453585 4716
: 2169307 18.49835¢ . &71¢
2  o5700 495 13.279756 ‘10192748 18.55679¢C 4713
2 ___.5700  .590 13.415700 10.2567538 184849122 _ _471é
2 <5700 €30 13. 508054 10.308501 19.025178 47158
2 L6000 - 350 13,337764 10.273760 18536948 4718
2 <6000 390 13.309245 10.243275 . 18.532171 4718
2 <6000  .469 13,311698 10224688 16602384 4718
2 6000 .495 13.357910 10.23194¢2 18.676736 47168
2 46000 590 13.4%1937 10. 304251 15.008255 4718
T .6000 630 13.5%2376 10.353333 19.202870 4718
3 .2200 .350 11.837459 9.050517 17. 294267 4718
3  .2200 <390 “11.771456 9.040314 17.242131} 4718
3 ,2200 .46 11.703673 8.967885 17.211993° 4713
3 .2200 .495 11.652632 8.977215 [7.226235 4713
3 L2200 _.590 11,741175 9.004700 17.3603519 _4718
3  .2200 .630 11.795278 9.0385%4 17. 464286 4718
3 .2600  .350 11.507846 $.070013 17.226543 4718
3 .2600 .390 11.735257 9.015752 17.165425 4718
00 0 136 56257 17114805 4718
3 L2600 495 11.639078 8.941857 17. 110274 4718
3 .,2600 590 11.669695 8.956707 17224516 _ 4718
3 .2600 ..630 11.715544 4.965236 17. 312461 4716
3 . .3500 __ .350 11,731217 ‘9.018633 17.036563 4118
3  .3900. .290 11.¢43858 8.953030 16.944211 4716
3 43900 460 11s53446% 8.874584 16.835238 4716
3 .3S00 .495 .11. 500935 6.853135 16.807997 - 4718
3 .3900 590 11.482158 8.833752 16827341 _ 4718
3  .3900 .€30 11.505920 Ge846745 16.670755 4718
3 44300 .350 11. 714151 9.007526 16.587964 4716
3 4300 390 11.623269 8.941084 16.88549% 4718
3 26300 .460 + 50696 8,856727 16.,761411 . 4716
3. 24300 .495 11.469649 8.832160 16.72623¢ 47135
3 .4 9 9 : 6716 16.723003_ 471§
3 4300 .630 11.458207 8.815731  16.762560 4716
700 Q 685159 - 3.990656 ) 6.846640 471§
- 5700 .390 11.587997 8.921114 16.722938 4718
3 5700 .40 11,459280 . 16559880 47T1A
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Non-Historical 1-Step (Cont.)

TABLE C-3

11.415105

B8.501545

3§ <5700 <495 16.504473
3 «5700 «590 11.364452 8.763223 164444480 471
3 «5700 «630 11.373040 8767720 16.459567 471¢
3 «6000 «350 1166067082 8.993844 _ l6eu2539b__ _ __ _471¢
3 L6000 390 ~11.590224 8.524763 16099017 471t
3. <6000 « 460 11.4£2072 " 0.E34703 10.531294 471¢
3 «6000 0495 11.4101%4 50590051 16.4735859 71
3 « 6000 599 11.368399 e 7TL9S40 _1549755¢ 471
3 « 6000 «€39 11. 377448 R.774801 16.420213 471¢
4 22200 «350 12,953542 9.849031 18.834472___ 47)¢
4 «2200 «399 12.904588 : G.805ut5 18.785725 471¢
2 « 460 ‘12670855 9.772654 18. 765520 &1t
4 «2200 «495 12.67895% 9.T772483 18.786545 471¢
&  A2200 2599 12.58435¢€ 9,&1&79L 18, 54800, __. __ 411 ¢
4 «2200 .30 13.004721 9.50383% 19.001533 471t
4 <2600 «39) 12.6343595 .9.833686 _ __18.802456 . _ 41t
-'o-——-rdoOO-—--.#é———-—-ltv-cuM S— T pr-T T R T MNP S AP
4 «2690 0«46 12.8383%0 9¢ T45057 loe 713415 471
A 2400 24945 Leaulenl S.la2l81 14.227206 471
4 «2600 «590 12.62363¢E 9. 8020632 18. 674065 471¢
w2600 L AuE0D  13,007528 . _9.055544 . 1H,971263 .. ____-_. 471¢
+ _ <3900 «350 12.E68564 9.755151 18739279 471¢
4  ,3S00  ,390 12,836304 G.740050 18,6695 17 e 411¢
4 «3500 «460 12. 776254 9.69129s 18.c09587 L4718
4__,3500  ,495 12.769642 9,419736 1E.608801. 471 E
4 «3900 «590 12. 8306062 S.7143%96 18.7062206 471F
; S 724384 18.790646 . 471t
4 «4300. 350 12697490 9.79522%4 l8.734578 471¢
; —_— 421G  9.1424Z28 La664C06___ . ___ 411f
4 4300 «460 . 12.772224 $e685821 18.601497 471¢
. 2495 12.70455) 9.073142 10599484 _611F
4 «4300 «590 12.824¢2¢3 9705653 18.693633 471¢
A 24300 4630 2 12.880657 Qe T44600 . 18.7T7C04_ .__.___ 4&411f
4 «5700 «350 12.546608 Q.8247¢4 18.797724 471t
4 <5700 »390 12.8909¢6 9780459 18,739650__ 47l
4 «5700 «460 12.842531 9.733726 16. 702354 471¢
L) «5700 2495 12. 842655 9,727030 18,7148)S 471k
4 «5700 «590 12.919695 9.770047 1d.853622 471¢
4 « 5700 «£30 12,986%539 928126348 _18.958456 q1¢
4 «6000  .350 12.9727¢1 $.0843016 18.834185 471¢
& __.,6000 .39 _ _12.921809 _____ 9.802628 . _ _ 18,783676. . _ _ —471€
4 «6000 460 12.882363 9.7¢1779 18.761595 4718
& L6C00 ,695 __  12.6b60540 G, 154503 1, 782533 47t
4 ..6000 «590 12.977956 Q,310879 18.547¢16 471¢
& <6000  ,630 - 13,051012 Q. M57217_ _ _ __19.064434 _.______ 411F
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TABLE C-4
Non-Historical 2-Step

. ——

_B__ALPHA__BETA ___ BORT(AVE 8Q) __  AVE ABS ____ 4TH_RT(AVE 4TH) ____ PTs
1 «0700 320 12,55098% 0.733208 19,4170607 462
1 ,0700 .60  12,851290 . 8,707791 $,422708
1 0700 o464 12,606134 8,731202 19,945020 462
__1___,9100___,520_____12‘904297 8,71789%08 19,676301 462
1 ,0700 12,737986 0,814735 19,765363 462
1 .0900 .320 __12,559067_ q,319990, _19,422361. 462
1 0900 360 12,550522 . 8,705757 19,426788 462
1 ,0900  ,464 12,604278 8,725712. 1_,545698 462
1 40900 o520 :2 670278 8.770722 19,676000 462
1 0900 550 12,730675 . 8,804925 19.763813 462
T e I000 o320 12.504638 §.744810 flsbossb““""“isz
1 3000 ,360 12,596147 8,725916 19,842469 462
) 03000 L4649 12, 643900 ““'F”?iloos 1#;313446“""“‘?32
1 43000 o520 12,711067 8,762112 . 19,80309) 462
123000 550 12758601 ™ (TR 19890944 362
1 43250 4320 {23616428__ .75}6§1 :9 551592 462
1 +3250° 4360 12,6094797 §,134506 x§‘565919 T 462
1 43250 o464 12,659829 84741063  19,702772__ 462
T 32507 L5870 12,720340 8,111490 : 19 836102~ 462
A ,3250 LSS0 12,776731 85796199 19,924608 462
1 43500 4320 12,629923 8,761871 19,574681 462
1 23500 - ,360 _  12,624237 _  6,744601__  _ 19,593805 462
1 43500 464 12,678716 8,753204 19,735617 462
1 L3500 .50 12,74932S8 B8, 7B3I%N___ 19,872465. 462
1 .3500 L.550 . 32,79R482 8,809052 " 19,962776 462
a3 S.11R566 11,606165 20,969243 462
2 40700 4360 15,076547 11561919 20,940324 462
2 0700 .464  15,06%697 11,9307  20,996391 _ 462
2 o0700 o520 15,118766 11,566750 21,104454 462
2 L0700 L5%0  1%.%040%0. 11,598477 @ 21,184406 462
2 L0900 o320 15,110964 11,596200 20,965571 462

_.2__1.090.9__;3_9___15_..0.557 32 11,58 2£L_JL_14LJ__LJ

2 L0900 464 . 15,048879 11,51399) 20,964617 462
2 ,0900_ o520 $5,097484 11,546396 21,088503 462
2 L0900 . o550 15,140183 11,576253 21,165997 462
2 43000 o320 - 15,019616 114546831 31,posea5 __ 462
2 3000 L360 15,022160 11,485104 20,972535 462
2 23000  ,464 14,960224 1‘504336 3;,995;;2 62
2 23000 L5520 14,97964% 11,405303 21,093644 ‘ 462
2 L3000 - ,S50 15,905229 11419586 21,161620 462
2 o3250 4320  15,002768 11,545404 21,023084 462
2 23250 - o360 15,025020 11,482658 20,990802___ 462
2 L3250  .464 14,96§760 11,39985% 21,027480 462
2 ,3250 4520 14.290010 11,398711 21,118716 462
2 #3250 550 15,004938 11,411835 21,107813 462
2_._23500 _ 4320 ___ _15,087649__ _ _ 11,545157 _ 21,0425%7 _ . __ 462
2 43500  ,360 15,030001 11,481709 21,012736 462
23800 .U-AQQ“-_-.153266ﬂ71._____11-391719 _.3),085322 462

d
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TABLE C-4
Non-Historical 2-Step (Cont.)

joome i moay Gmnn Mo
800 008701 0682 1033 4620
.ovoo .320 12,894116 9,813073 19,115155 < 4620
700 436G 12,797410 92741 367 _18,948864 4620

3 .o-wo o464 12,639358 9,682593 16,63610} 4620
3 40700 _ . 4520 . _ 125630999 ______ 9,640100 ____ _ 18,551452 ___ ___ 4620
D L0700 __ 550 32,632526____9,644796 . _______18,830639____ 4620
3 L0900 (320 12,882813 9 804497 - 19,095016 4620
"3 L0900 ,360 12.783249 .1; 6287 n.'m 263 4620
3 ,0900 464 12,616902 9,635043 16,597823 4620
J__,osoo._.szq__.n.sazm 9_.610439 — . 38,804648 . 4620
20900 850 . 12,580640 9,620099 10,470983 4620
_3__.3009__..320. .12.003361___2.1.41369 18,922944 4620
3 ,3000 4360 12,681733 9,662203 18,717006 4620
3 L3000 .464 = 12,444468 9.501810 18,278801 4620
3 03000 o520 12,365677 9,451198 16,113355 4620
3 23000 550 __ 32,33790S 9,436061 18,046167 4620
3 3250 L320 12,798593 §,744701 16,913073 4620
3 3250 _ 4360 12,678279 9,5593:1 38,698844 ; 4620
3 .32:0 T Ml Y ;:ggso 9,483120 :‘25:415“‘ 4620
3 3250 520 12 66 9,44¢1 18,076458 4620
S___aJ890 9949 14, g8y Y
3 . ¢3250 .5%0 "12,320038 92423217 16,007496 "~ 4620
3 43%00 4320 12,7948%4 94743241 __18,0899243 4620
23500 ¢360 12, s‘voosi_ﬁ.osusv YT e TES R— 1)

3 3500 ,464 12,42229) 9,486707 18,224068 4620
a_'.SSoo 520 12,336494 _T.me——xa 046061""—4620
3 3500 o550  12,304610 9,412019 17,971597 - 4620
i__".o'roo'_.azo 1’4“5’59592 11.040114 z:.osoxsz 4620
4 L0700 o360 14,49438%5 10,985%64 20,948437 4620
4 20700 .464 u.4iu1s"“"“io.9zt2§1_‘"zo 828425 4620
o1oo_____ __34,444260 10,9308782 20,849148 4620

I 0700 .55‘6_ 146,472637 10,9678 "'_26’ B04269 4620
J_.o_on_.}zo__.u..SBJQGL__mnaju___zhowiu_____ﬁzo
4 40900 4360 14,4084449 10,977825 20,935870 ‘ 4620
44,0900 o464  14,40603Q__ 10,907136 __  20,B067R81 - 4620
4 L0900 o320 14,422470 10,920167 20,821625 4620
4 L0900 __ _o5%0  14,448139 . 10,940419 20,853327. 4620
4 43000 o320 14,51845S ‘11,004825 21,018017 4620
4 L3000 5360 14,4365%50 10,931234 : 20,8921748 4620
4 L3000 L464 14,350068 - 10,822753 - 20,714517 ‘ 4620
A ,3000 o520 14,294543 _  10,005126 ___ 20,696486._________ 4620
4 L3000 530 14,301466 10,080662) 20,700689 - 4620
& D250 L3230 . 14,520840_ __ - 11,006148 _____ _ 21,017497 . _____ 4620
4 3250 (360 14,4308478 10,937988 20,699038 4620
4 23280 .464  14,30898) = 10.820%%0 _ 20,721868 = 4620
4 3250 4520 . 14,292832 10,000639 20,703774 4620
4 L3250 _ ,5%0__ 11..2.9.876.1,___10.0906u ___29..715843 4820
4 43500 L320 14,524647 11,000696 21,026502 4620
——adB00 2360 14,442333___ - 10,939137 _ .20.900944_ 4620

+ 93500 464 14,3120681 10,620689 - 20,733821 4620
4 . 23500 o5 20_1!.. 294532 90,790422 =@ 20,716628 4620
4 L3500 o550 14,299785 10,797366 20,729107 46320
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The data used in the analyses were obtained from Dr. John
Kreer of Michigan State University. Dr. Kreer used the data him-
self in previous traffic studiesigs) The data consist of volume
counts taken from four separate locations on the streets of
Toronto between 9/24/73 and 12/10/73. At cach location volumc
counts were obtained from each of two adjacent lanes. In this
study the volume counts from each lane were added together to
form a single volume count for each location. The four locations
are shown in Figures D1 and D2 (indicated by the detector pairs).
Note that the traffic is eastbound at location 3 while it is
westbound at locations 2 and 4. ("Location" numbers are equiva-
lent to '"sensor' numbers elsewhere in this report.)

The volume counts were broken down into S-minute time inter-
vals, numbered from 1 to 288 for each day. There were 76 days of
data. Except for 2 days that were missing (11/25/73 and 12/8/73),
fhe days were consecutive and included weekends. The first 29
week days, with the exception of the October 8th holiday, formed
Part 1 of the data for this study. The remaining 23 weekdays
formed Part 2 of the data.

Part 2 of the data is used as historical data in this study,
whilg Part 1 is used to test the predictors. Some of the data
used in Part 1 is shown in Fiéﬁres D3 through D22. Data for each
day of the week are shown for each location. The day shown at the

top right hand corner of each figure represents the particular
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day of testing (from the 76 total days). The data show the daily
variations at each location as well as different characteristics
peculiar to each location. The gaps shown are typical of the
data available.

There are 98 gaps (a gap is a group of consecutive time in-
tervals having no data) in Part 1 of the data. The average size
of a gap is 38.55 time intervals or 3.2 hours. The actual sizes
vary from 1 time interval to 148. 1In this prediction analysis
the gaps were processed as follows. Each time a gap occurred,
the calculation of the prediction errors at the time of the gap
and at the next four or five consecutive time intervals of exist-
ing data (depending on whether the 1- or 2-step predictor was
being used -- see text) was not included in the calculation of
the total prediction error measures (mean square error, mean abso-
lute error and mean of the fourth power of the error) for the
evaluation runs. This was done in order to allow the predictor

to re-initialize after passing through a gap.
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6493" _{Blm.s..;(-rtm IDME)

6200 —
5550' —_—

NORTHBOUND
5000" @ S0 DETECTORS - CURB LANE

~ CENTRE
T.C.S. (SEMI-ACTUATED)

e
4300' —P—

3975" —
3450" —

3050' —]

2400" Q}.‘Lc.s. (SEMI-ACTUATED)
1450 J—

650" —

. %a T.C.S. (FIXED TIME)

o *
DIM'A?CB LESLIE ST.
SCALE

FIGURE D1. LOCATION OF SENSOR
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JESTBOUND DETECTORS WESTBOUND DETECTORS

CURB LAKE
CERTRE LANE ,

EASTBOUND DETECTORS

162

g—o

T.C.S. (FIXED TIME)

LEFT LANE
- - CENTRE LANE
2308° 1957* 1201'
* DISTANCE SCALE
3316 2598° 2182° 1588° o'
CHURCH JARVIS HUNTLEY SHERBOURNE PARLIMENT

FIGURE D2. LOCATIONS OF SENSORS 2, 3 AND 4
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APPENDIX E
RELATIONSHIP OF UTCS

SECOND AND THIRD GENERATION PREDICTORS
- TO ARIMA PREDICTORS

Et)



In this appendix we show that:

1. The third generation UTCS traffic predictor is of
the same form as a Box-Jenkins optimal predictor
for an ARIMA(1,1,1) process. ‘In this case the
ARIMA(1,1,1) form predictor acts on the sequence
of raw traffic volume.

2. The second generation UTCS traffic predictor con-
sidered as a predictor of the difference between
current day counts and historical average counts
is likewise of the form of an optimal ARIMA(1,1,1)
predictor.

3. If the historical average traffic counts for use
in the second generation UTCS predictor are derived
as an exponentially weighted moving average (over
past days), then the second generation predictor is
equivalent'in form to an optimal (seasonal)
ARIMA(1,1,1) x (0,1,1)288 predictor acting on the
raw traffic counts.

E.1 THIRD GENERATION AS ARIMA(1,1,1)

First to derive the connection between third generation and
ARIMA predictors, we shall be making transformations in notation
in order to achieve conformity with Box-Jenkins notations (and to
allow us to make apparent the points of similarity with the second
generation UTCS predictor).

First note that equation 2.3 of Part 1 (Sec. 4.2) can be

brought into a simpler form using the specific equations (22),
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(19) and (18) of that same section:
(E.1) Vy(i+5) = (1 - a)m(3) + a5V, (i)

In this equation Vk(i) is the volume in time period i at sensor k.
Vk(i*j) is the bredicted volume at time period i+j, and uk(i) is

an exponential average of the volume including the current value:
(E.i) ak(i) = B;k(i-l) + (l-B)Vk(i) (equation 17, Part 1).
Using E2, E1 can be further transformed into:
(B-3) Vi(i+3) = (1-a;)Bu (i-1) + (a; + (1-8) (1-a;))V, (4)

Now we make the transformations of notation. Let Zt denote the
volume count during time period t (at the specific sensor) so Z,
replaces Vk(i) (with t replacing i). The exponential average of

Zt will be denoted by Zt so that Z¥ replaces ;k(i). The predicted

value of Zt+ as determined at time t will be denoted by Zt+' and

j j

so Zt+ replaces Vk(t+j). The symbol © replaces the symbol B (to

j
denote the same quantity). Finally, A will replace the quantity

(l-aj) B, or to summarize:

(B.4) Zyy5 = A2y g + (1-M)2,

(k.5) z, = 0OZ

¢ t-1 + (1-(—))2t

(E.6) 0 = 8

(E.7) X = B(l-uj)
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Equations B4 and ES5 define a predictor of the same form és
the B-J optimal ARIMA(1,1,1) predictor as is readily verified by
referring to Sec. 5.4.6 of Ref. 1.

E.2 SECOND GENERATION UTCS PREDICTOR AS ARIMA(1,1,1)

Next we show the connection between the second generation
UTCS predictor and the optimal ARIMA(1,1,1) predictor. Again
the UTCS notation will be brought into conformity with the nota-
tion to be used for common analysis.

From Sec. 4.1.1 of Part 1 cquation S5 can be rcw}ittcn (using

equations 1, 2, } and 4):
(E.8) V(t) - m(t) = C(t-1)(a+y) + (1l-a-y)r(t-1)

and equation (2) (Part 1) can be written (using the fact that
B=1- a):

(E.9) C(t) = aC(t-1) + (l-a)r(t)

wa r(t) = £(t) - m(t) where f(t) is the actual traffic count dur-
ing time interval t and m(t) is the historical average, i.e., an
average (smoothed or unsmoothed, see Appendix F) of traffic counts
for the same time of day taken over a number of previous days.

The difference, V(t), between the actual and historical counts is
what is predicted by the ARIMA(1,1,1) type predictor. The pre-
&iction of volume at time t is V(t), therefore V(t)-m(t) is the
prediction of r(t) made at time t-1. Thus replacing r(t) by Zt,
C(t) by Zt and V(t)-m(t) by 2t we have:

(E.10) 24,9 =22, ;+(1-M)2Z,
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(E.11) Zt = ezt-l + (l-e)Zt
where

(E.12) A =1 - @& - ¥

and

(E.13) 0 = «

Now E10 and E1l1 are identical to E4 and ES (with j=1) and so
are of the form of optimum ARIMA(1,1,1) predictors.

The parameters A and O like Z, stand for wholly diffecrent
quantities than they did in the discussion of UTCS Second Genera-
tion predictors earlier.

| E.3 SECOND GENERATION AS ARIMA(1,1,1) x (0,1),4,

Next we show that thé‘aspect of the second generation predic-
tor whereby it works on the difference between actual volume and
historical average volume is itself to be found in Box and Jenkins
Seasonal ARIMA models. More specifically, if the historical aver-
age is formed as an exponentially weightecd moving average (to be
explained below), then the Second Generation UTCS predictor becomes
of the form of an optimal ARIMA(1,1,1) x (0,1,1)240 predictor.
Before we give the demonstration of this, which is lengthy, we
note that the result is not used elsewhere in this report. The
primary significance of the result is to suggest that the UTCS
Second Generation method of'incorporating historical data is con-
sistent with the philosophy of Box and Jenkins who devote a whole
chapter to seasonal models. This suggests that dealing with the
dgrived time series consisting of the difference between the
aétual and historical average volumes is well founded.
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Denote the actual traffic volume at time t by Zt (1ike in the
THird Generation and unlike the treatment of the Second Generation

case discussed just above where Zt represents the difference

between the actual and the historical average volume).

It then turns out that for Zt representing five minute vol-
ume counts that Zt-288 is the volume count for the same time of
day as Zt (since these are 288 five-minute time periods in one
24-hour day).

Let us denote the exponentially weighted historical average

by ht (ht rocplacing m(t)), then

(L.14) ht = qht-288 + (l-q)Zt_288

The quantity q determines the "memory' of the exponential moving

avérage which determines he. Explicitly:

° k
(E.15) hy = (1-@) I a'he k.28

A rough idea of the number of past days data which enter into the
exponential average hy is given by I%a. Thus if q = .95, then

T%E = 20 and roughly speaking 20 days enter into the historical
average. The weight of the 21st prcvioqs day's volume (at the
same particular time of day, S5-minute period) enters in ht with a
weight which is only 0.36 times the contribution for the same five-
minute time pgriod on the first previous day. The 41lst day in the

past has a contribution equal to .36 that of the 21st day or

(.36)2 = ,129 times that of the immediately preceding day, etc.
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Exponential averages are a common feature in ARIMA predictors;
they have, as we see, a smoothly decreasing memory of the more
remote past. (However, in some cases we are dealing with memo-
ries of minutes rather than days.) The exponential moving aver-
age is also useful because of its ease of computation. Considera-
tions should be given such that the historical average for use in
the UTCS Second Generation predictor be produced as an exponential
moving average. In any case, we proceed to analyze the predictor
if it is so constructed.

Letting ht be given by El4 or EiS, we now define:

(E.16) U, = Z, - hy_,qe

(Thus Ut here is the equivalent of r(t) in the treatment in Part .
1, Sec. 4.1.) We have shown that the Second Generation predictor
is equivalent to predicting U, using an ARIMA(1,1,1) predictor.
Equations E10 and E1l1 give the form of such a predictor but also

we have that:

~

(E.17) 2., = (1-M)Z, + (A-0)Z,_; * OZ,

is equivalent to E10 and E11, as is easily shown by eliminating

Zt between equations E10 and Ll11.* (See also B-J, Ref. 1, Ilq.

*a) Z,,4,° A\Z

t+ t-1 + (-2

" b) zt = ta_i + (1-0)2t _
c)+from (a) it = AZi_l + (l-A)Zt_1
.d)+substitute (b) into (a) 2t,1 = A(ezt_2 + (1-o)zt_1) + (l-A)zt

subtract O0x(c) from (d) Zt+1 - Oit = A(07£_2‘+ (I;O)Zt_l)

*(1-A)Zy - OAZ_, - 0(1-M)Z, = (A-0)Zy 4 * (1-M)Z,
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~

5.4.22; remember a, = Zt - Zt’ A=0 - ¢).

Since we are now dealing with the difference between the
actual volume (nbw denoted by Zt) and the historical average ht’
equation E17 becomes:

A

Upe = (12U, + (A-0)U, _; + OU,

Now substituting for Ut from equation E16 we have:

(E.18) Z,4y - hey1-288 = (1M (Zp-hy pg0) *+ (A-0)(Z,_; -

he.1-288) * 0(2¢ - h¢.28s)
Equation E18 gives the predicted value of 2t+1 given Zt’ Zt-l’
zt-Z’ etc., including the historical averages as defined in E1l4
or E15 this prediction is established according to the UTCS method
using historical averages. Equation E18 is merely an algebraic and
notational transformation of equation 23 from Part 1, Our next
task is to set down the form of an ARIMA(1,1,1) x (0,1,1)288
l-step predictor and show that it is of the same form as equation

E18. From Sec. 9.1 of B-J (Ref. 1), we have that an ARIMA(1,1,1)

X (0,1,1)288 model can be expressed:
(£.19) (1-B%88)(1-9B) (1-B)Z, = (1-q3288)(1-en)at

where q, 6, & = 0 - A are arbitrary parameters (satisfying certain
réStrictions; see Ref. 1).

| The symbol B represents the backward shift operation;

?Zt = 7
that it is a shorthand for:

t-1° Expanding out equation E19 we obtain the equation
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(E.ZO) zt - (1+°)zt'1 + Ozt_z - zt-288 + (l'o)zt_l_zss

- 02y 5 588 = 3¢ - ®3¢.1 " 93¢-288 * 1%3¢-1-288

Using the standard BJ rules (i.e., substituting ZT-ZT for a;
see Eq. 5.1.22, Ref.1) for producing optimal 1l-step predictors

from ARIMA models, we obtain:

(E.21) 2y = (140024 g - 924 5 * Z¢.288(1-®)2¢.1-288
+ 02y 5 288 - @2 17Ze.1) - A2y 2887 2¢-288)
* a0(Zy.y.28872¢-1-288)
It is now a matter of algebra to show that E21 is equivalent to
E18 together with E16 (remember that ¢=0-1). The parameter ht mus t
be eliminated between E18 and E16. The chore is rather tedious
but the principle is the same as deriving E17 from E10 and Ell.
" The trick is to subtract from equation E18 the same equation
evaluated at t = t-288 and multiply by q:
(B.22) 2449 - 9Z¢41-288 ~ Mee1-288 * Ahge1-2.289)
= (1-M)(Z¢-2¢_ 288" N¢-288"Mt-2.288)
* (A-0) (24 172¢-1-288"Pt-1-288"P¢-1-2.288)
* 0(Z¢-Z¢.2887Mt-288"Me-2.288)

Now use the fact that ht'qht-288=(1'q)zt (obtained immediately

from equation 16) to eliminate adjacent pairs of terms of this form,

.85 “hey.288%AM¢+1-2.288 is replaced by -(1-q)2 . Equa-
"eP t+1-288

tion 121 (evaluated at t=t+l) results.
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Equation E21 can thus be regarded as the explicit form of
the UTCS Second Generation predictor when the historical average
is calculated as an exponentially weighted moving average. This
has advantages of computational simplicity as well as theoretical
reasonableness. The rather high degree of complexity (cf. Eq. 3
of main text, Part 2, which specifies the same predictor) results
from eliminating all implicit intermediate.quantities -- for
actual implementation the impiicit forms are simpler and more con-
venient. In this discussion Z, has represented the actual 5-
minute traffic volume count. Barlier in this Appendix and else-
where throughout the report (as noted in context), Zt represents

the difference between the actual volume and the historical aver-

age if historical data are being used (e.g., Second Generation) --
but Zt always represents the volume data themselves if historical
data are not being used (e.g, Third Generation). The reason for
tﬁe shift is so that Zt always represents the basic time series

to be predicted (based on its current and past values)i whatever

the context.
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o APPENDIX F |
. FOURIER SMOOTHING OF HISTORICAL DATA
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This appendix discusses the methods used to obtain the coef-
ficients for the Fourier smoothing curves, examines the results

obtained by varying the number of Fourier coefficients and partially

tests the results using predicting algorithms.

F.1 METHODS FOR OBTAINING FOURIER COEFFICIENTS

The data as discussed in Appendix D, has daily general shapes
peculiar to each sensor (i.e., peaks and valleys occur at about
the same time each day with some variation in their heights and
depths). Hence, it is reasonable to use a mathematical expression
in sines and cosines with the length of a day (288 5-minute time
intervals, see Appendix D) as their period to represent the common
daily trend plus a random error elj.

- This is written as follows:
F1) sz = Vz + ezj |

where sz is the volume counted in the 2'th interval of time of

the j'th day, and

~ L .
- 2mig . 2mif
F2) Vg a  + izllaicos(zgg-) *+ b;sin(zgz7))
where By Biag and bi's arc the 2L + 1 "Fouricer" coefficients.

A standard model is to assume that the expected valuc of °9j

is zero. The € are uncorrelated and have equal variance oz.

Lj's
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The unbiased estimate of o2 i.e., pure noise variance Szp is

given by

, 288 "¢ F - v 2,288 b
F3) S°p= ¢ I -V, n, -

P g=1 §=1 2 L3 2=1 L ’

where n, is the number of days which have data in the 2'th interval

and where
, n
F4) V, =

I Vgi/ng
j

1 J

M@

Thus, Vz is the average count in the 2'th time interval. Since it
is .convenient to work with Vz and ny,, equation (F1) is averaged over

the n, days, i.e.,

n,
o T e,.
- n,v . Lj ~
o AR )=1 - =
FS) V= n, * Th, Vo gy

With VAR=variance and COV=covariance, then

F6) VAR(V,) = VAR(V,) + 2COV(V,,E,) + VAR(E,)
2 2
=0+0+.g._=0_’
n, 1Ny

and
F7). COV(V,,7,,) = COV(V,,V, ) + COV(V,,E,)

+ COV(VE,,Ei) + COV(E‘,EQ,) =0

Thus, the (weighted) sum of squares is given by
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) 288 W ~)2 288 G )2
P8 SS= ¥ n -V)" = ¥ n,(e
91 [ AR A 8=1 [ )
P
(Ref.: The Analysis of Variance by Scheffe, pages 19 and 20.)
The sum of squares is minimized with respect to ag, a; and bi

by differentiating eduation (F8) with respect to a s a;

and setting the resulting partial derivative equal to zero. This

and b.
i

leads to the following equations in the unknowns a5, a4 and bi'

288 L 288 . L 288 .
a, In, + I a; z nzcos(Z"lz) + I bi z nzsin(z"lz)
2=1 i=1l “2=1 288 i=l “2=1 288
288 .
= In
=1 L8
288 L 288 .
2rI4 2mif 2nIt
a_ Z n,cos( )+ Za., In cos(fgg-)cos(fyg—)
Ogay & ZBE T yoptigag
L 288 . 288
s 2Mif 2nif 2nig
F9) + L b, I n,sin( )cos( ) = I n,V,cos
jo1 igay aSinizEE)COSizEET) = L npVgcos(zgy) |
288 L 288 <
. 2Tl L, .
20, Mesin(agg) + I a; T ngcos (zggt)sin(fggt)
=1 i=1 “2=1
L 288 . 288
2nil 2nlf £
+ 151b1251n251n(z§§—)31n(7§§—1 = I nEV251n(%%%—) ,
1 <IZ<L

The variance estimate (i.e., Fourier residual variance) derived

from the above sum of squares is given by
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288 .
L ng(Vg - V)
s e W
P10)  Sope1 -
288 - (2L+1)

2

The expected value of S§L+1’ E (S§L+1)’ is

5 | 2
o° & (zilnz[ﬁ(vz) - VL] )/[288 - (ZL"']-)]:

where E(Vg) is the expected value of Vz i.e., the true means of

at the time interval &. Thus, when the second term is zero,

2 2 sy i
F(SZL+1) = 0” and the data has a good fit in Vg. Thus, S§L+l can be
compared to the pure noise or error variance s2p (equation F3).
The expected value of Szp'is known to be equal to'oz regardless

df the fit used (Ref. Applied Linear Statistical Models by Neter

and Wasserman pages 117-119). The F statistic given by:

_ a2 g2
F11) F = 8.,/

is used to test the fit of Vy. (An excessively large value means

an unsatisfactory fit.)

F.2  THE BFEECTS OF VARYING THE NUMBERS OF FOURIER COEFEICIENTS

For Part 1 of the data (see Appendix D), the number of Jlourier
Cbéfficients considered was 11 through 21, 31 and 41 for all
sensors. In addition, for sensor 4, calculations for 51 and 81
coefficients were made. The results are shown in Figure Fl.

This shows the Fourier residual standard deviation SZL+1 (section
F.1) versus the number of Fourier coefficients. The pure

error standard deviation Sp is plotted in Figure Fl to show the
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limit to which SZL+1 approaches as the number, 2L+1, of Fourier
coefficient goes to 288. The calculations were repeated for
Part 2 of the data with the number of Fourier coefficients con-
sidered being 11 through 21, 31 and 41. These results are

shown in Figure F2., By the F Statistic (equation F1l1l),

2
2L+1

responding Szp value except for sensor 3, 41 Fourier coefficient

all values of S shown are significantly larger than the cor-
for Part 2. This tends to indicate that large numbers of Fourier
coefficients are_needed for "good fit." It can be noticed from the
Figures F1 and F2 that thc ratc of change of SZL+1 with respect to
the number of Fourier coefficients is quite rapid when the number
is less than 21 in contrast to when the number of coefficients is
greater than 21. This fact is used as the basis for some predictor
calculations discussed in Section F.3. It was originally

planned to use both parts of fhe data in the predictors (i.e.,

Part 2 of the data to predict Part 1 of the data and Part 1 to
predict Part 2). As an indication of the expected effectiveness

of the various smoothed averages when calculated on one part of .
the data and uscd to predict on thc other part of the data, two
measures are introduced. These measures uscd the wcighted sum of
squares of the differences between the smoothed values computed |

on Part 1 (Part 2) and the actual averages computed on Part 2

(Part 1). The measure, S L+1 (see equation F12), which is

i’j’z
formed from this sum of squares, has as its denominator the same
quantity, 288-(2L-1), as does S2L+1 and is thus easily compared

to Spp+1.
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The other measure Ei,j,2L+1 (see equation F13), has this sum

of squares divided by L n,, and is thus the square root of the
2=1
weighted mean of the squared differences.

The definitions are as follows:

e B . - V021288 - (e )y 1/2
F12) Sy y,21e1 7 (2 MilVay = Vs
288 288
F13) €, . = nE 1/2
i,j,2L+1 z§1n“i(vzj Vos) /[zflngi])

where i =1, j=2and i =2, j = 1. llere ;zx denotcs ;2 calcu-
léted on Part 1 of'the data, ;22 denotes ;2 calculated on Part 2,
V,1 is V, calculated on Part 1, and Vji is Vz is calculated on
Part 2.

As would be expected, 51,2,2L+1 in Figure F3 and 82,1,2L+1 in
Figure F4, are higher point by point than the corresponding S2L+1
in Figure F1 and SZL+1 in Figure F2, Sensor 4 in Figure F4
seems to indicate that a limit for 52,1,2ﬁ+1 of about 18.5 is
reached for 31 < 2L+1 < 81 for that particular sensor. Much more
infbrmatiqn can be perceived from Figures F5 and F6. The four
horizontal dashed lines in thesc two figures arc the values
obtained when VR. of Part j is used for \7” in the equation for
i,j,2L+1 for each sensor. These results are called Ei,j,288.
For all four sensors for both Part 1 and Part 2, the two figures

E

indicate that the average curve Vz would give better results in

the predictor than Vi of 21 coefficients which in turn would give
better predictor results than the Ve for lesser numbers of
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coefficients. This is shown to be true in Section F.3 with some
calculations.

Figure F5 indicates that a fit, 62, of 41 Fourier coeffi-
cients is better for prediction than the average curve, Vz’
at sensor 3. Similarly from Figure F6, a fit, ;z, of 31 and 41
Fourier coefficients for sensor 3, and 81 Fourier coefficients
for sensor 4 should be better for use with a predictor. This was
not verified with actual predictor calculations. But results in
Table F2 in section F.3 when compared with Table Fl1 in this sec-
tion suggest this is true, although not significantly. The
measure in Table F1 shows how less accurate the fits of 2L+1 coef-
ficients are relative to the average curve. It is to be noticed
that the entry -2.641% means that it is 2.641% better to use the
fit of 41 coefficients of Part 2 than the average curve, Vg’
of Part 2 to approximate the average curve of Part 1. (In other
words, the error of using 41 Fourier coefficients to determine
the average is 2.641% less than the error using the straight
historical average, certainly a very small difference from a
practical point of view.) It is seen that, except perhaps for
very high levels of smoothing, the straight average generally
gives more accurate predictions.

Table F1

100 X (By 5 2141 ~ F1,2,2880%1,2,288

2L+1/Sensor 1 2 3 4
41 -2.641%
21 34.41% 29.91% "3.773% 21.77%
13 105.82%
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F.3 SOME PREDICTOR RESULTS

All predictor calculations in this paper were predictions on
Part 1 of the data. This section discusses some of the results
for the Second Generation predictor described by the following

equations and discussed in the body of the report.

F14) I, aZ + (1 -a)Z

-2,2L+1 © %4t-3,2L+1 t-2,2L+1

N

Z = g7 + (1

t,2L+1 t-2,2L+1 B2y 1, 2141

~

where Z, 5141 = Ve - Ve,2Le1,

Vt is the volume count at time interval t in Part 2 of the data
and 6t,2L+1 is the volume count at time interval t of the Fourier
fit of 2L+1 coefficients for Part 2 of the data. The notation,
V.., Mmeans the count at two time intervals before time interval t.
The a's and B's were optimized for each sensor and for each par-
ticular "Fourier'" fit. The criteria for optimizing the a's and
the B's is to find their values which give the minimal value,
N2L+1’ of the root mean squaré of the error (error = Zt - Et).
‘The’N2L+1's are smaller for all the sensors when the average

curve is used for Gz in the predictor than when Gz is the fii of
21 Fourier coefficients. This is shown in Table F2. This table
shows that a fit of 13 Fourier coefficienés is 10.5% less accurate
at sensor 1 than when using the (unsmoothed) average curve such as

Vo In the Table, N288 is the value obtained when the average

curve, VL’ is used for V,.
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Table F2
100 X (Npp4q - Nagg)/Nags
2L+1/Sensor 1 2 3 4
21 5.4% 3.7% .25% 1.9%
13 10.5%

Note that when the common entries in Table F1 and Tablec F2 are

comparcd, although the magnitudcs are different by about a power

of 10, Table F1 does indicate what is to be expected in Table F2.

For example, at sensor 1, using the average vV, for 02 is better

- F.4 SUMMARY

than using the fit of 21 Fourier coefficients, etc.

In conclusion, it is best to use a relatively high fit of

the historical data to obtain the best predictor results. This

fit can be chosen by an examination of the data like that given

in Figures FS5 and F6.

If having such a high fit is not feasible

(because of high costs of computation, etc.), then it is best to

use the straight curve than to use a Fourier fit of small number

of coefficients.

The aforementioned examination is less expen-

sive and time consuming than to actually use predictors on the

data to arrive at the same conclusions.

This study has indicated that the average curve leads to more

accurate predictors than do Fourier fits of the average curve

using up to 30 or 40 or even more coefficients. Fourier fits using

even higher numbers of coefficients may lead to better predictors

but are apparently only very slightly better than the average curve.
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